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Charity is typically carried out by individual donors, who donate money to
charities they support, or by centralized organizations such as governments
or municipalities, which collect individual contributions and distribute them
among a set of charities. Individual charity respects the will of the donors,
but may be inefficient due to a lack of coordination; centralized charity is
potentially more efficient, but may ignore the will of individual donors. We
present a mechanism that combines the advantages of both methods for donors
with Leontief preferences (i.e., each donor seeks to maximize an individually
weighted minimum of all contributions across the charities). The mechanism
distributes the contribution of each donor efficiently such that no subset of
donors has an incentive to redistribute their donations. Moreover, it is group-
strategyproof, satisfies desirable monotonicity properties, maximizes Nash
welfare, returns a unique Lindahl equilibrium, can be computed efficiently,
and implemented via natural best-response spending dynamics.

Keywords: Mechanism design, collective decision making, Leontief preferences, public
good markets, spending dynamics

1. Introduction

Private charity, given by individual donors to underprivileged people in their vicinity, has
existed long before institutionalized charity via municipal or governmental organizations.
Its main advantage is transparency—the donors know exactly where their money goes to,
which may increase their willingness to donate. A major disadvantage of private charity
is the lack of coordination: donors may donate to certain people or charities without
knowing that these recipients have already received ample money from other donors.
Centralized charity via governments or municipalities is potentially more efficient but, if
not done carefully, may disrespect the will of the donors.

Example 1. Suppose there are two donors and four charities. The first donor is willing
to contribute $900 and supports charities A, B, and C, whereas the second donor is
willing to contribute $100 and supports charities C and D.

• A central organization may collect the contributions of the donors and divide them
equally among the four charities, so that each charity receives $250. While this
outcome is the most balanced possible for the charities, it goes against the will of
the first donor, since $150 of her contribution is used to support charity D.
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• By contrast, without any coordination, each donor may split her individual contri-
bution equally between the charities that she approves. As a result, charities A and
B receive $300 each, charity C receives $350, and charity D receives $50. However,
if the second donor knew that charity C would already receive $300 from the first
donor, she would probably prefer to donate more to charity D, for which she is the
only contributor.

• Our suggested mechanism would give $300 to each of charities A, B, and C, and
$100 to charity D. This distribution can be understood as recommendations to the
individual donors: the first donor should distribute her contribution uniformly over
charities A, B, and C whereas the second donor should transfer all her contribution
to charity D. Importantly, the contribution of each donor only goes to charities
that the donor approves. Subject to that, the donations are divided as equally as
possible.

Evaluating and comparing donor coordination mechanisms requires some assumptions
on the donors’ preferences. Since charitable giving is often driven by egalitarian con-
siderations, we assume that donors want to maximize the minimum amount given to
a charity they approve. This can be formalized by endowing each donor with a utility
function mapping each distribution to the smallest amount of money allocated to one of
the donor’s approved charities. For example, for the distribution (300, 300, 300, 100), the
first agent’s utility is 300 and the second agent’s utility is 100. More generally, our model
allows donors to attribute different values than merely 1 and 0 (which indicate approval
and disapproval, respectively) to different charities. If a donor i values a charity x at vi,x,
then i’s utility from a distribution δ equals minx δ(x)/vi,x, where the minimum is taken
over all charities x for which vi,x > 0. Such utilities are known as Leontief utilities (see,
e.g., Varian, 1992; Mas-Colell et al., 1995) and are often studied in resource allocation
problems (e.g., Codenotti and Varadarajan, 2004; Nicoló, 2004; Ghodsi et al., 2011; Li
and Xue, 2013). Whenever vi,x ∈ {0, 1} for all agents i and charities x, we refer to this
as (Leontief) utility functions with binary weights.1

Given the contribution and utility function of each donor, our goal is to distribute the
money among the charities in a way that respects the individual donors’ preferences. The
idea of “respecting the donors’ preferences” is captured by the notion of an equilibrium
distribution. We say that a distribution is in equilibrium if it can be implemented by
telling each donor how to distribute her contribution among the charities, such that
the prescribed distribution maximizes the donor’s utility given that the other donors
follow their own prescriptions. One can check that, in Example 1, the unique equilibrium
distribution is (300, 300, 300, 100).

Since utility functions are concave, it follows from a result by Rosen (1965) that an
equilibrium distribution (in pure strategies) always exists. Our first main result is that
each preference profile admits a unique equilibrium distribution. Moreover, we prove that

1One can further assume that, subject to maximizing the minimum amount given to an approved charity,
the donors want to maximize the second-smallest amount, then the third-smallest amount, and so on.
Our results carry over to this class of preferences; see Section 8.
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the unique equilibrium distribution coincides with the unique distribution that maximizes
the product of individual utilities weighted by their contributions (Nash welfare), which
implies that it is Pareto efficient, and can be computed via convex programming. The
equilibrium distribution can be viewed as the market equilibrium of a pure public good
market as well as a Lindahl equilibrium with personalized prices.

In Example 1, the equilibrium distribution (300, 300, 300, 100) also maximizes the
minimum utility of all agents (egalitarian welfare) subject to each donor only contributing
to her approved charities. We show that this is true in general when weights are binary, and
extends to an infinite class of welfare measures “in between” Nash welfare and egalitarian
welfare. Moreover, for the case of binary weights, we show that the equilibrium distribution
coincides with the distribution that allocates individual contributions to approved charities
such that the minimum contribution to charities is maximized lexicographically. This
allows for simpler computation via linear programming.

Based on existence and uniqueness, we can define the equilibrium distribution rule
(EDR)—the mechanism that returns the unique equilibrium distribution of a given profile.
Our second set of results show that EDR exhibits remarkable axiomatic properties:

• Group-strategyproofness: agents and coalitions thereof are never better off by
misrepresenting their preferences, and are strictly better off by contributing more
money,

• Preference-monotonicity : the amount donated to a charity can only increase when
agents increase their valuation for the charity, and

• Contribution-monotonicity : the amount donated to a charity can only increase
when agents increase their contributions.

As we further show, equilibrium distributions are the limit distributions of natural
spending dynamics based on best responses. This can be leveraged in settings where a
central infrastructure is unavailable or donors are reluctant to completely reveal their
preferences. One could envision a scenario in which donors have set aside a, say, monthly
budget to spend on charitable activities and repeatedly distribute this budget after
observing the donations made by other donors in previous rounds. We prove that,
when donors spend their money myopically optimally in each round, the relative overall
distribution of donations converges to the equilibrium distribution. Hence, socially
desirable outcomes can be attained even without a central infrastructure, as long as
charities are transparent about the donations they receive. This scenario also allows for
occasional changes in the agents’ preferences and contributions, as the process keeps
converging towards an equilibrium distribution of the current profile.

Apart from private charity, our results are also applicable to donation programs—
prominent examples include AmazonSmile and government programs (e.g., cinque per
mille run by the Italian Revenue Agency and mechanizm 1% in Poland). In these
programs, participants can redirect a portion of their payments (purchase price and
income tax, respectively) to charitable organizations of their choice.2 AmazonSmile ran

2These programs only allow each participant to choose exactly one charitable organization. However,

3



Draft – September 30, 2024

from 2013 to 2023 and was used to allocate a total of $400 million. In 2022, a record
e510 million were distributed via cinque per mille in Italy, and Poland increased the
donatable quota of personal income tax from 1% to 1.5%.3

In contrast to private charity, participants of donation programs do not have the
option of taking their money out of the system, which means that the important issue
lies in finding a desirable distribution of the contributions rather than in incentivizing
the participants to donate in the first place. A major criticism of the Polish program
is that large organizations accumulate most of the donations whereas some locally
popular charities are left almost empty-handed.4 The same phenomenon is well-known
in healthcare, where organizations helping people with rare diseases find it difficult to
attract donors. This issue is alleviated by our assumption of Leontief preferences as
illustrated by the following example.

Example 2. Suppose there are ten donors, each of whom donates $30. Donor i assigns
value 2 to a charity A that supports patients with a common disease, and assigns value 1
to a charity Bi that supports patients with some rare disease.

If each donor is forced to select a single charity to donate to (as in the redirection
programs mentioned above), then A will receive all donations and B1, . . . , B10 will receive
none. When donors can distribute their donations independently, without coordination,
they will likely split their donations in the ratio 2 : 1. As a result, A will get $200 and
each Bi will get only $10.

By contrast, our suggested mechanism will give $50 to A and $25 to each Bi, which is
the unique equilibrium. This distribution adequately reflects the donors’ preferences, as
each of them supports A twice as much as Bi.

The remainder of this paper is structured as follows. After discussing related work in
Section 2, we formally introduce our model in Section 3. Section 4 lays the foundation
for the proposed distribution rule by showing existence and uniqueness of equilibrium
distributions via Nash welfare maximality as well as characterizing Pareto efficient
distributions and pointing out connections to public good markets and Lindahl equilibrium.
Subsequently, we define EDR as the rule that always returns the equilibrium distribution
and examine it axiomatically in Section 5. In Section 6, we explore natural spending
dynamics that converge towards the equilibrium distribution. The special case of Leontief
utilities with binary weights allows for alternative characterizations of EDR that enable
its computation via linear programming, as well as further justification of EDR via a wide
class of welfare functions; this is covered in Section 7. The paper concludes in Section 8

as Brandl et al. (2022) argued, permitting them to indicate support for multiple organizations can
increase the efficiency of the distribution.

3Leontief utility functions are not only suitable in the context of charity but also in other settings where
agents have to jointly fund resources that are complementary in nature. For example, consider a
communication network and a set of agents, each of whom intends to transmit a signal along an
individual path in the network. Their utilities are given by the quality of the signal at the last node on
their path, which equals the minimal transmission quality of an edge along that path. Our mechanism
can be used to coordinate agents’ investments to improve the transmission quality of edges.

4See https://pl.wikipedia.org/wiki/Przekazywanie_1%25_podatku_dochodowego_na_rzecz_organ
izacji_po%C5%BCytku_publicznego_w_Polsce and the references therein.
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with a brief discussion of alternative utility models such as linear, Cobb-Douglas, and
leximin Leontief utilities. Elaborate proofs are deferred to the Appendix.

2. Related work

A well-studied problem related to the one we study in this paper is that of private
provision of public goods (see, e.g., Samuelson, 1954; Bergstrom et al., 1986; Varian, 1994;
Falkinger, 1996; Falkinger et al., 2000). In this stream of research, each agent decides on
how much money she wants to contribute to funding a public good. Typically, this leads
to under-provision of the public good in equilibrium, resulting in inefficient outcomes.
In our model, we assume that agents have already set aside a budget to support public
charities, either voluntarily or compulsorily (as part of their taxes or payments to a
company). The inefficiency that we are worried about is an inefficient allocation among
different public goods. As a result, the problem we study has the flavor of both social
choice and fair division.

Socially optimal outcomes can be implemented by well-known strategyproof mechanisms
such as the Vickrey-Clarke-Groves (VCG) mechanism. However, VCG fails to be budget-
balanced: it collects money from the agents, and has to ‘burn’ that money in order to
maintain strategyproofness. By contrast, in our setting, the monetary contribution of
each agent is fixed and independent of the agent’s preferences. The entire contribution
goes to charities approved by the agent and the central issue is one of fair distribution.
As shown in Section 5.1, strategyproofness can be achieved without imposing additional
payments on the agents.

Perhaps the first paper to consider charitable giving from a mechanism design per-
spective is due to Conitzer and Sandholm (2004, 2011). They let agents incentivize
other agents to donate more by devising “matching offers”, where a donation is made
conditional on how much and to which charities other agents donate. They introduce an
expressive bidding language for such offers and study the computational complexity of
the resulting market clearing problem.

A rapidly growing stream of research explores participatory budgeting (e.g., Aziz and
Shah, 2021), which allows citizens to jointly decide how the budget of a municipality
should be spent in order to realize projects of public interest. In contrast to charities, the
projects considered in participatory budgeting come with a fixed cost (e.g., constructing
a new bridge), and each project can be either fully funded or not at all. Moreover, most
participatory budgeting papers assume that money is owned by the municipality rather
than by the agents themselves.

The work most closely related to ours is that of Brandl et al. (2021, 2022) who initiated
the axiomatic study of donor coordination mechanisms. In their model, the utility of
each donor is defined as the weighted sum of contributions to charities, where the weights
correspond to the donor’s inherent utilities for a unit of contribution to each charity.
Under this assumption, the only efficient distribution in Example 1 is to allocate the
entire donation of $1000 to charity C, since this distribution gives the highest possible
utility, 1000, to all donors. However, this distribution leaves charities A, B, and D with
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no money at all, which may not be what the donors intended. With sum-based utilities,
as studied by Brandl et al., charities are perfect substitutes: when a donor assigns the
same utility to several charities, she is completely indifferent to how money is distributed
among these charities. By contrast, in our model of minimum-based utilities, charities are
perfect complements: donors want their money to be evenly distributed among charities
they like equally much. Fine-grained preferences over charities can be expressed by
setting weights for Leontief utility functions. It can be argued that this assumption better
reflects the spirit of charity by not leaving anyone behind. The modified definition of
utility functions critically affects the nature of elementary concepts such as efficiency or
strategyproofness and fundamentally changes the landscape of attractive mechanisms.

The main result by Brandl et al. (2022) shows that, in their model of linear utilities,
the Nash product rule incentivizes agents to contribute their entire budget, even when
attractive outside options are available. However, the Nash product rule fails to be
strategyproof (Aziz et al., 2020) and violates simple monotonicity conditions (Brandl
et al., 2021). In fact, a sweeping impossibility by Brandl et al. (2021) shows that, even in
the simple case of binary valuations, no distribution rule that spends money on at least one
approved charity of each agent can simultaneously satisfy efficiency and strategyproofness.
This confirms a conjecture by Bogomolnaia et al. (2005) and demonstrates the severe
limitations of donor coordination with linear utilities. Interestingly, as we show in this
paper, Leontief utilities allow for much more positive results.

Originating from the Nash bargaining solution (Nash, 1950), the Nash product rule
can be interpreted as a tradeoff between maximizing utilitarian and egalitarian welfare,
a recurring idea when it comes to finding efficient and fair solutions. When allocating
divisible private goods to agents with linear utility functions, the Nash product rule
returns the set of all competitive equilibria from equal incomes (Eisenberg and Gale, 1959);
thus, it results in an efficient and envy-free allocation (Foley, 1967). The connection
between market equilibria and Nash welfare maximizers has been extended to various
single-seller markets (Jain and Vazirani, 2010). The most prominent of these are Fisher
markets, in which a set of divisible goods is available in limited quantities, and each
buyer has a fixed budget at her disposal. The problem is to find equilibrium prices that
clear the market while maximizing each buyer’s utility. Eisenberg (1961) shows that
when buyers have homogeneous utility functions (which include linear, Cobb-Douglas,
and Leontief utility functions), market equilibria for Fisher markets can be found by
maximizing the Nash product of individual utility functions (see also Codenotti and
Varadarajan, 2007). While this resembles Theorem 1, there are some important differences
between Fisher markets and our public good markets. First of all, in contrast to Fisher
markets, the relationship between equilibria and Nash welfare maximizers in public good
markets does not extend to all homogeneous utility functions. In fact, for linear utility
functions, all public good equilibrium distributions may be inefficient (Brandl et al.,
2022, Proposition 1). Even for the special case of Leontief preferences, the relationship
between equilibria and Nash welfare maximizers seems to be of a different nature. In
contrast to our setting (see Section 4.3), Fisher market equilibria with Leontief preferences
may involve irrational numbers and thus cannot be computed exactly (Codenotti and
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Varadarajan, 2004).5 Moreover, mechanisms that maximize Nash welfare in private good
settings do not share the desirable properties of EDR. For example, Ghodsi et al. (2011)
show that the Nash product rule violates strategyproofness in a simple resource allocation
setting with Leontief preferences. To the best of our knowledge, there is no previous
work on Leontief preferences in the context of public goods.

A natural special case of our model is that of Leontief utilities with binary weights,
where agents only approve or disapprove charities and the utility of each agent is
given by the minimal amount transferred to any of her approved charities. Under the
assumption that agents only contribute to charities they approve and that all individual
contributions are equal, this can be interpreted as a (many-to-many) matching problem
on a bipartite graph where agents (and their contributions) need to be assigned to
charities with unlimited capacity. Bogomolnaia and Moulin (2004) proposed a solution
to such matching problems that maximizes egalitarian welfare of the charities (rather
than the agents). The intriguing connection between these two types of egalitarianism
are addressed in Section 7. Bogomolnaia and Moulin also showed that their solution
constitutes a competitive equilibrium from equal incomes (from the charity managers’
point of view).

3. The model

Let N be a set of n agents. Each agent i contributes an amount Ci ≥ 0. For every subset
of agents N ′ ⊆ N , we denote CN ′ :=

∑
i∈N ′ Ci. The sum of all contributions, CN , is

called the endowment.
Further, consider a set A of m potential recipients of the contributions, which we refer

to as charities. A distribution is a function δ assigning a nonnegative real number to
each charity, such that

∑
x∈A δ(x) = CN . The support {x : δ(x) > 0} of δ is denoted by

supp(δ), and the set of all possible distributions is denoted by ∆(CN ). For a subset of
charities A′ ⊆ A, we define δ(A′) :=

∑
x∈A′ δ(x) as the total amount allocated to charities

in A′.
For every i ∈ N and x ∈ A, there is a real number vi,x ≥ 0 that represents the value of

charity x to agent i. We assume that each agent i has at least one charity x for which
vi,x > 0. For every agent i ∈ N , we define Ai := {x : vi,x > 0} as the set of charities to
which i attributes a positive value.

The utility that agent i derives from distribution δ is denoted by ui(δ) and is given by
the Leontief utility function:

ui(δ) = min
x∈Ai

δ(x)

vi,x
.

Note that, for every charity x ∈ A and every agent i ∈ N ,

δ(x) ≥ vi,x · ui(δ).
5Interestingly, Nash welfare maximizers for Fisher markets with linear utilities are always rational-valued,

whereas this is not true for our public good markets (Brandl et al., 2022, Table 2).
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If all vi,x are in {0, 1}, we refer to Leontief utilities with binary weights. A profile P
consists of {Ci}i∈N and {vi,x}i∈N,x∈A. Throughout this paper, agents with contribution
zero do not have any influence on the outcome and can thus be treated as agents who
choose not to participate in the mechanism.

A distribution rule f maps every profile to a distribution ∆(CN ) of the total endowment
CN .

4. Equilibrium distributions

The endowment to be distributed consists of the contributions of individual agents. In
order to formalize which distributions are in equilibrium, we therefore need to define how
distributions can be decomposed into individual distributions.

Definition 1 (Decomposition). A decomposition of a distribution δ is a vector of
distributions (δi)i∈N with∑

i∈N
δi(x) = δ(x) for all x ∈ A; (1)∑

x∈A
δi(x) = Ci for all i ∈ N. (2)

Clearly, each distribution admits at least one decomposition. We aim for a decom-
position in which no agent can increase her utility by changing δi, given Ci and the
distributions δj for j ̸= i. In other words, we look for a pure strategy Nash equilibrium
of the game in which the strategy space of each agent i is the set of δi satisfying (2).

Definition 2 (Equilibrium distribution). A distribution δ is in equilibrium if it admits a
decomposition (δi)i∈N such that, for every agent i and for every alternative distribution
δ′i satisfying

∑
x∈A δ′i(x) = Ci,

ui(δ) ≥ ui(δ − δi + δ′i).

The present section is devoted to proving the following theorem.

Theorem 1. Every profile admits a unique equilibrium distribution. This distribution is
Pareto efficient and can be computed via convex programming.

As a consequence, we can define the equilibrium distribution rule as the distribution
rule that selects for each profile its unique equilibrium distribution. In Section 5, we will
prove that this rule satisfies desirable strategic and monotonicity properties.

4.1. Critical charities

We start by characterizing equilibrium distributions based on critical charities. Given a
distribution δ, we define the set of agent i’s critical charities

Tδ,i := arg min
x∈Ai

δ(x)

vi,x
.
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Each charity x ∈ Tδ,i is critical for agent i in the sense that the utility of i would
decrease if the amount allocated to x were to decrease. Every agent has at least one
critical charity. For every agent i and charity x such that either vi,x > 0 or δ(x) > 0, the
following equivalences hold:

x ∈ Tδ,i ⇔ δ(x) = vi,x · ui(δ);
x ̸∈ Tδ,i ⇔ δ(x) > vi,x · ui(δ).

(3)

For every group of agents N ′ ⊆ N , we denote by Tδ,N ′ the set of charities critical to at
least one member of N ′.

We prove below that a distribution is in equilibrium if and only if each agent contributes
only to her critical charities.

Lemma 1. A distribution δ is in equilibrium if and only if it has a decomposition (δi)i∈N
such that δi(x) = 0 for every charity x ̸∈ Tδ,i. Equivalently, it has a decomposition
satisfying the following equality instead of (2):∑

x∈Tδ,i

δi(x) = Ci for all i ∈ N. (4)

Proof. ⇒: Suppose that, in every decomposition of δ, some agent i contributes to a
charity y ̸∈ Tδ,i. Fix a decomposition (δi)i∈N of δ. Since δ(y) > 0, by (3), δ(y) > vi,y ·ui(δ).
Agent i can reduce a small amount from δi(y) and distribute it equally among all charities
in Tδ,i; this strictly increases the Leontief utility of i. Therefore, δ is not an equilibrium
distribution.
⇐: Suppose δ has a decomposition in which each agent i only contributes to charities

in Tδ,i. In every other strategy of agent i, she must contribute less money to at least one
such charity, y ∈ Tδ,i. Since δ(y) > 0, by (3), the original distribution to charity y was
δ(y) = vi,y · ui(δ), so the new distribution to y is less than vi,y · ui(δ). Therefore, the
utility of agent i is smaller than ui(δ) and the deviation is not beneficial.

Corollary 1. In an equilibrium distribution, every charity that receives a positive amount
is critical for at least one agent.

Lemma 1 implies that an equilibrium distribution satisfies an even stronger equilibrium
property.

Corollary 2. In every equilibrium distribution (and associated decomposition), no group
of agents can deviate without making at least one of its members worse off.

This is because any deviation decreases the contribution to a critical charity of at least
one group member. This equilibrium notion is slightly stronger than strong equilibrium
by Aumann (1959).
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4.2. Efficiency

One of the main objectives of a centralized distribution rule is economic efficiency.

Definition 3 (Efficiency). Given a profile P , a distribution δ ∈ ∆(CN ) is (Pareto)
efficient if there does not exist another distribution δ′ ∈ ∆(CN ) that (Pareto) dominates
δ, i.e., ui(δ′) ≥ ui(δ) for all i ∈ N and ui(δ

′) > ui(δ) for at least one i ∈ N . A distribution
rule is efficient if it returns an efficient distribution for every profile P .

Corollary 2 implies that every equilibrium distribution is efficient, since any Pareto
improvement yields a beneficial deviation for the group of all agents.

The following lemma characterizes efficient distributions of an arbitrary profile.

Lemma 2. A distribution δ is efficient if and only if every charity x ∈ supp(δ) is critical
for some agent.

Proof. ⇒: Suppose that some charity x ∈ supp(δ) is not critical for any agent. Since
δ(x) > 0, by (3), δ(x) > vi,x · ui(δ) for all agents i ∈ N . Denote

D := δ(x)−max
i∈N

(vi,x · ui(δ))

where our assumptions imply that D > 0. Construct a new distribution δ′ by removing
D/2 from charity x and distributing it equally among all other charities. We claim that
ui(δ

′) > ui(δ) for every agent i ∈ N . Indeed, if vi,x = 0 then ui does not decrease by the
removal from δ(x), and strictly increases by the addition to all other charities. Otherwise,

ui(δ
′) = min

(
δ′(x)

vi,x
, min
y∈Ai\x

δ′(y)

vi,y

)
.

Both terms are larger than ui(δ):

• The former term is (δ(x) − D/2)/vi,x > (δ(x) − D)/vi,x = (maxj∈N [vj,x ·
uj(δ)])/vi,x ≥ ui(δ) by construction.

• For the latter term, the fact that ui(δ) < δ(x)/vi,x implies that ui(δ) =
miny∈Ai\x (δ(y)/vi,y), and miny∈Ai\x (δ

′(y)/vi,y) is strictly larger than that since
each charity y ∈ A \ x receives additional funding in δ′.

Hence, δ is not efficient.
⇐: Suppose that every charity x ∈ supp(δ) is critical for some agent. Let δ′ be any

distribution different than δ. Since the sum of both distributions is the same (CN ), there
exists a charity y ∈ supp(δ) with δ′(y) < δ(y). Let iy ∈ N be an agent for whom y is
critical in δ. Then the utility of iy is strictly smaller in δ′:

uiy(δ
′) ≤ δ′(y)

viy ,y
(by definition of Leontief utilities)

<
δ(y)

viy ,y
(δ′(y) < δ(y) by definition of y, and viy ,y > 0 by definition of iy)

= uiy(δ) (by (3), since y is critical for iy in δ)

so δ′ does not dominate δ. Hence, δ is efficient.
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Despite this characterization, the set of efficient distributions fails to be convex,6 as in
the case of linear utilities (see Bogomolnaia et al., 2005).

Corollary 3. Every equilibrium distribution is efficient.

An alternative proof of Corollary 3 is obtained by combining Corollary 1 and Lemma 2.
The following lemma shows that every efficient utility vector is generated by at most

one distribution.

Lemma 3. Let δ and δ′ be efficient distributions inducing the same utility vector, that
is, ui(δ) = ui(δ

′) for all i ∈ N . Then, δ = δ′.

Proof. By Lemma 2, for each x ∈ supp(δ) there is an agent for whom x is critical. Denote
one such agent by ix. Then,

δ(x) = vix,x · uix(δ) (by (3), since x is critical for ix)
= vix,x · uix(δ′) (by the lemma assumption)
≤ δ′(x) (by definition of Leontief utilities).

The same inequality δ(x) ≤ δ′(x) trivially holds also for all x ̸∈ supp(δ). Since both
distributions sum up to CN , this implies δ = δ′.

Consequently, an efficient distribution rule essentially maps a profile to a utility vector.

4.3. Existence, uniqueness, and computation

One common way to obtain an efficient distribution is to maximize a welfare function.
Formally, for any strictly increasing function g on R≥0, we say that a distribution δ
is g-welfare-maximizing if it maximizes the weighted sum

∑
i∈N Ci · g(ui(δ)). Clearly,

any such distribution is efficient. Whenever g is strictly concave, there is a unique
g-welfare-maximizing distribution; the straightforward proof is given in Appendix A.

We focus on the special case in which g is the logarithm function. The Nash welfare of
a distribution δ is defined as the sum of logarithms of the agents’ utilities, weighted by
their contributions:

Nash(δ) :=
∑
i∈N

Ci · log ui(δ).

The Nash rule selects a distribution δ that maximizes Nash(·) or, equivalently, the
weighted product of the agents’ utilities

∏
i∈N uCi

i (with the convention that 0 log 0 = 0
and 00 = 1). The following lemmas show that a distribution is in equilibrium if and only
if it maximizes Nash welfare. This implies the existence and uniqueness of equilibrium
distributions.7

6Consider an example with three charities {a, b, c} and two agents with v1,c = v2,a = 0 and vi,x = 1
otherwise, and C1 = C2 = 1. Then, δ = (1, 1, 0) and δ′ = (0, 1, 1) are both efficient distributions, but
not 0.5 δ + 0.5 δ′ = (0.5, 1, 0.5).

7An alternative non-constructive existence proof can be obtained by leveraging a theorem by Rosen
(1965), who shows the existence of pure equilibria in n-player games with bounded, closed, and convex
strategy sets when the payoff function is continuous in strategy profiles and concave in individual
strategies.
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Lemma 4. Every distribution that maximizes Nash welfare is in equilibrium.

One way to prove Lemma 4 is to analyze the KKT conditions of the constrained
maximization problem corresponding to maximizing Nash welfare. Below, we give a more
intuitive proof, which helps to illustrate the “social” aspect of the equilibrium distribution.
We first show that, in any non-equilibrium distribution, there is a set of agents who
“waste” some of their contribution on charities that are only critical for other agents.

Lemma 5. If δ is an efficient distribution that is not in equilibrium, then N can be
partitioned into two disjoint groups of agents, N+ and N− = N \N+, such that

δ(Tδ,N−) < CN− ; (5)
δ(Tδ,N+ \ Tδ,N−) > CN+ . (6)

Proof. Let (δi)i∈N be any decomposition of δ. Construct a directed graph G in which
the nodes correspond to agents, and there is an arc i → j if and only if δi(Tδ,j) > 0,
that is, agent i contributes to a critical charity of j. We call the arc i → j strong if
δi(Tδ,j \ Tδ,i) > 0, that is, agent i contributes to a charity that is critical for j but not
for i. Otherwise, we call the arc i → j weak. Since δ is not in equilibrium, by Lemma 1,
there is an agent, say agent 1, who contributes to a charity x ̸∈ Tδ,1. Since δ is efficient,
by Lemma 2, x is critical to some other agent, say agent 2, so G contains a strong arc
1 → 2.

If the strong arc is a part of a directed cycle, then we can move a sufficiently small
amount ε along the cycle without changing δ. In detail, suppose without loss of generality
that the cycle is 1 → 2 → · · · → k → 1, where the involved charities are x1 ∈ Tδ,1, x2 ∈
Tδ,2 \ Tδ,1, x3 ∈ Tδ,3, x4 ∈ Tδ,4, . . . , xk ∈ Tδ,k. We assume that x2 is in Tδ,2 \ Tδ,1 since
the arc 1 → 2 is strong; in particular, x2 must be different than x1. The other arcs
may be strong or weak, and some of the xi may coincide. For every i ∈ {1, . . . , k − 1},
move a small amount ε > 0 from δi(xi+1) to δi(xi); move the same ε from δk(x1) to
δk(xk). Note that the decomposition changes, but the total δ remains the same. Increase
ε until one arc of the cycle disappears, or the strong arc becomes weak. Repeat this
cycle-removal procedure until all strong arcs are not part of any directed cycle. This
process is guaranteed to terminate since in each cycle removal, either the respective
strong arc becomes weak or the cycle it is part of is removed. Furthermore, no new
(strong) arcs are created as agents do not contribute to additional charities, and the
overall distribution δ together with the set of critical charities does not change.

Let G be the graph of the resulting decomposition. Since the total distribution is still
δ, which is efficient but not in equilibrium, G still has at least one strong arc, say j → k.
Let N+ be the set of agents accessible from k via a directed path (where k ∈ N+), and
let N− := N \N+. Since j → k is not part of any directed cycle, j ∈ N−.

Due to the strong arc j → k, agents of N− waste some of their own contributions
on critical charities of N+, that are not critical for themselves. Moreover, the critical
charities of N− do not receive any donations from agents of N+, since they are not
accessible from N+. This proves (5).

12
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In contrast, the agents in N+ spend all their contributions on their own critical
charities, that are not critical charities of agents outside N+. In addition, they receive
some donations from agents of N−. This proves (6).

Proof of Lemma 4. Let δ be an efficient non-equilibrium distribution. We prove that δ
is not Nash-optimal.

Let N− and N+ be the subsets of agents defined in Lemma 5. If δ(Tδ,N−) = 0, then
Nash(δ) = −∞ and δ is clearly not Nash-optimal, so we may assume that δ(Tδ,N−) > 0.
We construct a new distribution δ′ in the following way.

• Remove a small amount ε from δ(Tδ,N+ \ Tδ,N−), such that each charity loses
proportionally to its current distribution. That is, for each charity x ∈ Tδ,N+ \Tδ,N− ,
the new distribution is δ′(x) := δ(x) · [1− ε/δ(Tδ,N+ \ Tδ,N−)].

• Add this ε to δ(Tδ,N−) such that each charity gains proportionally to its current
distribution. That is, for each charity y ∈ Tδ,N− , the new distribution is δ′(y) :=
δ(y) · [1 + ε/δ(Tδ,N−)].

Choose ε sufficiently small such that the sets of critical charities of agents in N− do not
change (that is, no new charities become critical for them). This redistribution has the
following effect on the agents’ utilities:

• The utility of each agent i ∈ N+ may decrease by a factor of up to [1− ε/δ(Tδ,N+ \
Tδ,N−)]. Therefore, the contribution to Nash welfare changes by at least ∆N+(ε) :=
CN+ ·log[1−ε/δ(Tδ,N+\Tδ,N−)]. We have limε→0∆N+(ε)/ε = −CN+/δ(Tδ,N+\Tδ,N−),
which is larger than −1 by inequality (6).

• The utility of each agent i ∈ N− increases by a factor of [1+ ε/δ(Tδ,N−)]. Therefore,
the contribution to Nash welfare increases by ∆N−(ε) := CN− · log[1 + ε/δ(Tδ,N−)].
We have limε→0∆N−(ε)/ε = CN−/δ(Tδ,N−), which is larger than 1 by inequality (5).

The overall difference in Nash welfare is ∆(ε) := ∆N+(ε) + ∆N−(ε), and we have
limε→0∆(ε)/ε > −1 + 1 = 0, so ∆(ε) > 0 for sufficiently small ε. Therefore, Nash(δ′) >
Nash(δ), so δ was not Nash-optimal, completing the proof.

Lemma 6. Every equilibrium distribution maximizes Nash welfare.

Proof. Let δ∗ be an equilibrium distribution. For any distribution δ, we derive an upper
bound for Nash(δ) in terms of δ∗. We show that this upper bound is maximized when
δ = δ∗ and is equal to Nash(δ) for δ = δ∗. Thus, Nash(δ) ≤ Nash(δ∗) so δ∗ maximizes
the Nash welfare.

Formally, let (δ∗i )i∈N be any decomposition of δ∗ satisfying Lemma 1, and let Nδ∗,x :=
{i : x ∈ Tδ∗,i} be the set of agents for whom x is critical in δ∗. For every distribution δ
with Nash(δ) > −∞, we have

Nash(δ) =
∑
i∈N

Ci log(ui(δ))

13
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=
∑
i∈N

 ∑
x∈Tδ∗,i

δ∗i (x)

 log(ui(δ)) (by (4))

≤
∑
i∈N

∑
x∈Tδ∗,i

δ∗i (x) · log
(
δ(x)

vi,x

)

=
∑
x∈A

 ∑
i∈Nδ∗,x

δ∗i (x) · log
(
δ(x)

vi,x

)
=
∑
x∈A

 ∑
i∈Nδ∗,x

δ∗i (x)

 log(δ(x))−
∑
x∈A

 ∑
i∈Nδ∗,x

δ∗i (x) log(vi,x)


=
∑
x∈A

δ∗(x) log(δ(x))−
∑
x∈A

 ∑
i∈Nδ∗,x

δ∗i (x) log(vi,x)

 . (by (1))

We claim that, for every fixed δ∗, the latter expression is maximized for δ = δ∗. The
second term is independent of δ. As for the first term

∑
x∈A δ∗(x) log(δ(x)), consider

the optimization problem of maximizing
∑

x∈A δ∗(x) log(δ(x)) subject to
∑

x∈A δ(x) =∑
x∈A δ∗(x) (note that δ∗ is a constant in this problem). Its Lagrangian is

∑
x∈A

δ∗(x) log(δ(x)) + λ ·

(∑
x∈A

δ∗(x)−
∑
x∈A

δ(x)

)

Setting the derivative with respect to δ(x) to 0 gives δ∗(x)/δ(x) = λ for all x ∈ A. Since∑
x∈A δ(x) =

∑
x∈A δ∗(x), we must have λ = 1, so δ = δ∗. This means that

Nash(δ) ≤
∑
x∈A

δ∗(x) log(δ∗(x))− const(δ∗).

For Nash(δ∗), the same derivation holds, but the inequality becomes an equality, since in
equilibrium, δ∗i (x) > 0 only if ui(δ∗) = δ∗(x)/vi,x. Therefore,

Nash(δ) ≤ Nash(δ∗),

so δ∗ is Nash-optimal.

Since the logarithm function is strictly concave, Lemma 14 in Appendix A implies
that there is a unique distribution that maximizes Nash welfare. Hence, Lemmas 4 and 6
entail that there is a unique equilibrium distribution, and it is efficient, as claimed in
Theorem 1.

The equilibrium distribution maximizes a weighted sum of logarithms and can thus
be approximated arbitrarily well by considering the corresponding convex optimization
problem. For linear utilities, Brandl et al. (2022) show that it is impossible to compute
the Nash-optimal distribution exactly, even for binary valuations, since this distribution
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may involve irrational numbers. By contrast, for Leontief utilities the Nash-optimal
distribution is rational whenever the agents’ valuations and contributions are rational.
This is the case because, given the sets of critical charities for each agent, the equilibrium
distribution can be computed using linear programming.8 In the special case of binary
weights, the equilibrium distribution can be computed using a polynomial number of
linear programs; see Section 7.

4.4. Cobb-Douglas utilities

It turns out that the equilibrium distribution is unaffected if the agents’ Leontief utility
functions are replaced with Cobb-Douglas utility functions for the same values for charities.
Given values for charities, the Cobb-Douglas utility function of agent i is defined as
ui(δ) =

∏
x∈A δ(x)vi,x . Both Cobb-Douglas and Leontief utility functions belong to

the class of utility functions with constant elasticity of substitution (see, e.g., Varian,
1992; Mas-Colell et al., 1995). Similarly to the case of maximizing the Nash product of
individual utilities, maximizing a single Cobb-Douglas utility function is equivalent to
maximizing

∑
x∈A vi,x · log(δ(x)).

Proposition 1. Given values (vi,x)i∈N,x∈A, a distribution is in equilibrium for Leontief
utility functions if and only if it is in equilibrium for Cobb-Douglas utility functions.9

Proof. We show that Lemma 1 (with the same definition of critical charities) also
holds for Cobb-Douglas utilities ui(δ) =

∑
x∈A vi,x · log(δ(x)). Looking at the deriva-

tive dui(δ)/dδ(x) = vi,x/δ(x), we observe that increasing the amount of contribution of
argmaxx∈A vi,x/δ(x) = argminx∈A vi,x · log(δ(x)) gives agent i the largest marginal gains.
⇒: Suppose that, in every decomposition of δ, some agent i contributes to a charity

y ̸∈ Tδ,i. Fix a decomposition (δi)i∈N of δ. By assumption, vi,y · log(δ(y)) > vi,x · log(δ(x))
for any x ∈ Tδ,i. Agent i can move a sufficiently small amount ε from δi(y) to a charity
x ∈ Tδ,i, resulting in a new individual distribution δεi ; this strictly increases her utility as

lim
ε→0

ui(δ − δi + δεi )− ui(δ)

ε

= lim
ε→0

vi,x ·
log(δ(x) + ε)− log(δ(x))

ε
+ vi,y ·

log(δ(y)− ε)− log(δ(y))

ε

=
vi,x
δ(x)

− vi,y
δ(y)

> 0.

Therefore, δ is not an equilibrium distribution.
⇐: Suppose δ has a decomposition in which each agent i only contributes to charities

in Tδ,i. In every other strategy of agent i, she must contribute ε less to at least one such

8In Fisher markets with linear utility functions, there exists a rational-valued equilibrium distribution,
which can be computed exactly in polynomial time via the ellipsoid algorithm and Diophantine
approximation (Jain, 2007; Vazirani, 2012). Similar techniques can also be used in our setting to give
a pseudo-polynomial time algorithm, see Appendix D.

9Proposition 1 also holds when the weighted logarithms in the additive representation of Cobb-Douglas
utility functions are replaced with an arbitrary strictly concave, strictly increasing function.
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charity, y ∈ Tδ,i. Similar to the other direction, it can be shown that vi,y · (log(δ(y))−
log(δ(y)− ε)) > vi,x · (log(δ(x) + ε)− log(δ(x))) for any charity x. Therefore, the utility
of agent i is smaller than ui(δ) and the deviation is not beneficial.

As a consequence, existence and uniqueness of equilibrium distributions carry over to
Cobb-Douglas utility functions. However, efficiency breaks down.

Remark 1. The equilibrium distribution can violate efficiency for Cobb-Douglas utilities.
Consider two agents with C1 = C2 = 6 and three charities a, b, and c such that Agent
1 assigns value 1 to charities a and b and Agent 2 assigns value 1 to charities b and
c. The other values are 0. Then the equilibrium distribution δ∗ = (4, 4, 4) results in
utilities u1(δ

∗) = u2(δ
∗) = 4 · 4 = 16. However, the distribution δ = (3, 6, 3) provides

more Cobb-Douglas utility to both agents: u1(δ) = u2(δ) = 3 · 6 = 18.

4.5. Public good markets

While equilibrium distributions are defined as Nash equilibria in a strategic game, they
can also be seen as market equilibria in a stylized public good market. To this end,
consider a market in which each charity corresponds to a divisible public good in unlimited
supply. Each agent has a budget of Ci to spend on public goods and preferences on
how the endowment CN should be distributed among the goods. Each public good is
available at the same unit price. A distribution is in equilibrium if no agent can increase
her utility by redistributing her budget.

Alternatively, equilibrium distributions can be interpreted in a hypothetical public
good market with personalized prices as introduced by Lindahl (1919). The following
definition is adapted from Definition 5 by Fain et al. (2016). A distribution δ is a Lindahl
equilibrium if there exist personal price functions p1, . . . , pn ∈ RA

≥0 such that the following
two conditions hold.

1. For every agent i ∈ N , δ maximizes ui(y) subject to
∑

x∈A pi(x)y(x) ≤ Ci and
y ∈ RA

≥0. That is, y is the best bundle that i could “buy” using her share of the
budget.

2. δ maximizes the expression
∑

x∈A y(x)
(∑

i∈N pi(x)− 1
)

subject to y ∈ RA
≥0, which

represents the net profit of a hypothetical producer who collects all agents’ payments
and “produces” every charity at unit cost.

Fain et al. (2016) and Gul and Pesendorfer (2022) have established relationships between
Nash welfare and Lindahl equilibrium for certain types of utility functions. For example,
Fain et al. (2016, Theorem 2) show that, if all agents have the same budget CN/n
and all utilities are scalar-separable and non-satiating, then a Lindahl equilibrium can
be computed efficiently by maximizing a concave potential function that generalizes
Nash welfare. We prove an analogous result for Leontief utilities (which are neither
scalar-separable nor non-satiating) and non-uniform budgets.

Proposition 2. A distribution is in equilibrium if and only if it is a Lindahl equilibrium
distribution.
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Note that, since the equilibrium distribution is unique, the proposition also implies
that the Lindahl equilibrium is unique (up to normalization).

Proof. We first show that every equilibrium distribution is a Lindahl equilibrium distri-
bution. Let δ∗ be the equilibrium distribution with equilibrium decomposition (δ∗i )i∈N .
We can assume without loss of generality that every charity is valuable to at least one
agent, and therefore δ∗(x) > 0 for all x ∈ A. The prices are defined by letting

pi(x) :=
δ∗i (x)

δ∗(x)

for all i ∈ N and x ∈ A. Then,
∑

x∈A pi(x)δ
∗(x) =

∑
x∈A δ∗i (x) = Ci. By Lemma 1,

pi(x) = 0 for every project x not critical for i. Therefore, any other y ∈ RA
≥0 with∑

x∈A pi(x)y(x) ≤ Ci must allocate a smaller amount to some project critical for i, and
hence yield a smaller utility for i. So the first part of the definition holds.

For the second part, note that, the profit of any y ∈ RA
≥0 for the given prices is

∑
x∈A

y(x)

(∑
i∈N

pi(x)− 1

)
=
∑
x∈A

y(x)

(∑
i∈N

δ∗i (x)

δ∗(x)
− 1

)

=
∑
x∈A

y(x)

(
δ∗(x)

δ∗(x)
− 1

)
= 0,

so δ∗ vacuously maximizes the profit. Hence, δ∗ is a Lindahl equilibrium as claimed.
We now show that every Lindahl equilibrium is an equilibrium distribution. Let z be

a Lindahl equilibrium with prices p1, . . . , pn ∈ RA
≥0. Again, we can assume without loss

of generality that every charity is valuable to at least one agent. Hence, z(x) > 0 for all
x ∈ A; otherwise, at least one agent would receive utility 0 and condition 1 of Lindahl
equilibrium would not hold for that agent. Since we consider Lindahl equilibrium up
to normalization, we can assume without loss of generality

∑
x∈A z(x) = CN and write

δ = z in the following.
First, by the second condition, the expression gx :=

∑
i∈N pi(x) is the same for all

x ∈ A. Otherwise, the net profit could be improved by moving funds from charities with
low gx to charities with high gx. Furthermore, taking the sum of

∑
x∈A pi(x)δ(x) ≤ Ci

over all agents in the first condition shows that gx ≤ 1.
Second, pi(x) = 0 for x ̸∈ Tδ,i; otherwise, as δ(x) > 0, agent i spends on x a positive

amount pi(x)δ(x), and could use it on her critical charities instead to improve her utility.
Third,

∑
x∈A pi(x)δ(x) = Ci for every agent i, otherwise she could afford buying a

larger “amount” of her critical charities.
We claim that for any group of agents N− ⊂ N , CN− ≤ δ

(
Tδ,N−

)
. To see this, note

that

CN− =
∑
i∈N−

Ci =
∑
i∈N−

∑
x∈A

pi(x)δ(x) (as Ci =
∑
x∈A

pi(x)δ(x))

17



Draft – September 30, 2024

=
∑
i∈N−

∑
x∈TN−,δ

pi(x)δ(x) (as pi(x) = 0 for x ̸∈ Tδ,i)

=
∑

x∈TN−,δ

∑
i∈N−

pi(x)δ(x)

≤
∑

x∈TN−,δ

δ(x) (as
∑
i∈N−

pi(x) ≤ 1 for all x)

= δ
(
Tδ,N−

)
.

By (5) in Lemma 5, δ is the equilibrium distribution.

For general utility functions, these two notions of equilibrium do not coincide, e.g., in
Remark 1 for Cobb-Douglas utilities, δ constitutes the Lindahl equilibrium, which means
that the Lindahl equilibrium Pareto-dominates the equilibrium distribution.

5. The equilibrium distribution rule

Based on Theorem 1, we define the equilibrium distribution rule (EDR) as the distribution
rule that, for each profile, returns the unique equilibrium distribution for this profile. In
this section, we investigate axiomatic properties of EDR.

5.1. Strategyproofness

A distribution rule is group-strategyproof if no coalition of agents can gain utility by
misreporting their valuations or contributing less. This incentivizes truthful reports
and allows for a correct estimation of agents’ utilities under different distributions.
Furthermore, a group-strategyproof rule ensures that every agent donates the maximal
possible contribution, thereby guaranteeing maximal gains from coordination.

Definition 4 (Group-strategyproofness). Given a distribution rule f , a profile P , and
a group G ⊆ N , a profile P ′ is called a manipulation of P by G if C ′

G ≤ CG (the
contribution of G may decrease), and the valuations of agents in G may change, while the
contributions and valuations of all agents in N \G remain the same. Such a manipulation
is called successful if uj(f(P ′)) ≥ uj(f(P )) for all j ∈ G and ui(f(P

′)) > ui(f(P )) for at
least one i ∈ G, where (ui)i∈N refers to the utilities in P .

A distribution rule f is group-strategyproof if in any profile, no group of agents has a
successful manipulation.

We prove that EDR is group-strategyproof by leveraging the following lemma.

Lemma 7. Let δ1 and δ2 be two distributions, and i ∈ N an agent.
(a) If ui(δ2) ≥ ui(δ

1), then every charity in Tδ1,i receives at least as much funding in
δ2, that is: δ2(y) ≥ δ1(y) for all y ∈ Tδ1,i.

(b) Similarly, if ui(δ2) > ui(δ
1), then δ2(y) > δ1(y) for all y ∈ Tδ1,i.
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Proof. For (a), for every charity y ∈ Tδ1,i, we have

δ1(y) = vi,y · ui(δ1) (by (3), as y is critical for i in δ1)

≤ vi,y · ui(δ2) (by assumption)

= vi,y · min
x∈Ai

δ2(x)

vi,x
(by definition of Leontief utilities)

≤ vi,y ·
δ2(y)

vi,y
(since y ∈ Tδ1,i ⊆ Ai)

= δ2(y).

For (b), the first inequality becomes strict.

Theorem 2. EDR is group-strategyproof.

Proof. Suppose by contradiction that some group of agents has a successful manipulation,
and let G ⊆ N be an inclusion-maximal such group. For an arbitrary profile P , denote
by P ′ the profile after a successful manipulation by G and by δP and δP

′ the respective
equilibrium distributions. Since the manipulation succeeds, uj(δ

P ′
) ≥ uj(δ

P ) for all
j ∈ G and ui(δ

P ′
) > ui(δ

P ) for at least one i ∈ G. By Lemma 7, δP ′
(x) ≥ δP (x) for every

charity x that belongs to TδP ,j for some j ∈ G, and δP
′
(x) > δP (x) for every charity x in

TδP ,i. This implies

δP
′

⋃
j∈G

TδP ,j

 > δP

⋃
j∈G

TδP ,j

 . (7)

We write both equilibrium distributions as decompositions δP =
∑

i∈N δPi and δP
′
=∑

i∈N δP
′

i satisfying Lemma 1. Since C ′
G ≤ CG, inequality (7) above must hold for the

individual distribution of at least one agent k ∈ N \G, that is,

δP
′

k

(
∪j∈GTδP ,j

)
> δPk

(
∪j∈GTδP ,j

)
.

Consequently, at least one charity xG ∈ ∪j∈GTδP ,j has δP
′

k (xG) > δPk (xG). By Lemma 1,
xG must be critical for k in δP

′ . Therefore,

vk,xG
· uk(δP

′
) = δP

′
(xG) (by (3), as xG is critical for k in δP

′
)

≥ δP (xG) (by Lemma 7, as xG ∈ TδP ,j for some j ∈ G).

≥ vk,xG
· uk(δP ) (by Leontief utilities),

so agent k’s utility is not decreased by the group’s manipulation. Consequently, k could
be added to G—contradicting the maximality of G.

We conclude that no group of agents has a successful manipulation and thus EDR is
group-strategyproof.
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In fact, the above proof shows that if the total contribution CG decreases, then
the utility of at least one agent in G has to strictly decrease under EDR since∑

i∈G δP
′

i

(⋃
j∈G TδP ,j

)
<
∑

i∈G δPi

(⋃
j∈G TδP ,j

)
and the above argument applies. In

particular, an agent receives strictly more utility when she increases her contribution.
The interpretation of EDR as the Nash product rule even allows us to give an explicit
lower bound on the utility gain when increasing one’s contribution.

Theorem 3. Under EDR, agents are strictly better off by increasing their contribution.

Proof. Let P ′ be the profile where, compared to P , one agent j increased her contribution
by Z > 0. Let δP ∈ ∆(C) and δP

′ ∈ ∆(C+Z) be the respective equilibrium distributions.

We claim that uj(δ
P ′

)

uj(δP )
≥ C+Z

C . To see this, define δ′ = C+Z
C · δP and δ

′′
= C

C+Z · δP ′

such that δ′ ∈ ∆(C + Z) and δ
′′ ∈ ∆(C). Denote by NASH P (δ) the weighted product

of agents’ utilities in profile P and distribution δ (the exponent of the Nash welfare as
previously defined). Then,

1 ≤ NASH P ′(δP
′
)

NASH P ′(δ′)
(by maximality of δP

′
in ∆(C + Z))

=
NASH P (δ

P ′
)

NASH P (δ′)
· uj(δ

P ′
)Z

uj(δ′)Z
(as agent j increased contribution by Z)

=

(
C + Z

C

)C

· NASH P (δ
′′
)

NASH P (δ′)
· uj(δ

P ′
)Z

uj(δ′)Z
(as δP

′
=

C + Z

C
· δ′′

)

=
NASH P (δ

′′
)

NASH P (δP )
· uj(δ

P ′
)Z

uj(δ′)Z
(as δ′ =

C + Z

C
· δP )

≤ uj(δ
P ′
)Z

uj(δ′)Z
(by maximality of δP in ∆(C))

Thus, uj(δP
′
) ≥ uj(δ

′) = C+Z
C · uj(δP ) and the auxiliary claim is proved.

If uj(δ
P ) > 0, then the auxiliary claim implies that uj(δ

P ′
) > uj(δ

P ). Otherwise,
uj(δ

P ) = 0 implies Cj = 0, and Cj + Z > 0 implies uj(δ
P ′
) > 0 by the equilibrium

property, so again uj(δ
P ′
) > uj(δ

P ).

We are not aware of other settings in which the Nash product rule is strategyproof.
Theorem 2 strongly relies on Leontief preferences. If, for example, preferences are given
by Cobb-Douglas utility functions, EDR can be manipulated. To see this, consider the
example given in Remark 1. If the first agent only reports a positive value for charity a,
her utility increases from 4 · 4 = 16 to 6 · 3 = 18.

5.2. Preference-monotonicity

An important property from the perspective of charity managers is preference-
monotonicity, which requires that for every agent i and charity x ∈ A, δ(x) weakly
increases when vi,x increases. In other words, a charity can only receive more donations
when it becomes more popular.
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Definition 5 (Preference-monotonicity). A distribution rule f satisfies preference-
monotonicity if for every two profiles P and P ′ which are identical except that v′i,x > vi,x
for one agent i and one charity x, we have f(P ′)(x) ≥ f(P )(x).

For linear utilities, strategyproofness implies preference-monotonicity (Brandl et al.,
2021). This does not hold for Leontief utilities, even when valuations are binary. Never-
theless, we still have the following.

Theorem 4. EDR satisfies preference-monotonicity.

Proof. Let P be a profile and P ′ a modified profile where one agent i increases her
valuation for one charity x (that is, v′i,x > vi,x and v′i,y = vi,y for all y ∈ A \ x). Let δP

and δP
′ be the respective equilibrium distributions. We need to show that δP ′

(x) ≥ δP (x).
Let ui and u′i be agent i’s Leontief utility functions in the two profiles.
By definition of Leontief utilities, u′i(δ

P ) = min(ui(δ
P ), δP (x)/v′i,x). We consider two

cases, depending on which of the two expressions within the minimum is larger.
Case 1 : ui(δ

P ) < δP (x)/v′i,x. Then u′i(δ
P ) = ui(δ

P ), and all charities in TδP ,i remain
critical for i in the new profile. Therefore, by Lemma 1, δP is still an equilibrium
distribution for P ′. By uniqueness of the equilibrium distribution, δP ′

(x) = δP (x).
Case 2 : ui(δ

P ) ≥ δP (x)/v′i,x. By definition of Leontief utilities,

δP
′
(x)

v′i,x
≥ u′i(δ

P ′
).

By strategyproofness (Theorem 2),

u′i(δ
P ′
) ≥ u′i(δ

P ).

By definition of Leontief utilities,

u′i(δ
P ) = min

(
ui(δ

P ),
δP (x)

v′i,x

)
=

δP (x)

v′i,x
,

since by assumption ui(δ
P ) ≥ δP (x)/v′i,x. Combining these three inequalities yields

δP
′
(x) ≥ δP (x), as desired.

To complement Theorem 4, we observe some other effects of increasing the valuation
vi,x of one agent i for one charity x:

• The equilibrium Nash welfare cannot increase; otherwise, the equilibrium distribu-
tion in the new profile would also have a higher Nash welfare than the equilibrium
distribution of the original profile, with respect to the original valuations; but
this contradicts Lemma 6. However, the equilibrium Nash welfare might remain
constant if x is not among the critical charities of agent i.
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• Similarly, the utility of agent i under the equilibrium distribution cannot increase:
if agent i’s utility with the new valuation is larger under the new equilibrium,
this implies that her utility with the original valuation is also larger in the new
equilibrium and thus, there exists a beneficial manipulation (reporting exactly
that new valuation instead). This would contradict strategyproofness of EDR
(Theorem 2). However, agent i’s utility might remain constant if x is not among
her critical charities.

5.3. Contribution-monotonicity

For some applications, it is desirable if increased contributions do not result in the
redistribution of funds that have already been allocated. For example, if agents arrive
over time or increase their contributions over time, ideally the mechanism only needs
to take care of the additional contributions. This would allow a deployment of the
mechanism as an incremental process in which charities can make immediate use of the
donations they receive. We formalize this property in the following definition.

Definition 6 (Contribution-monotonicity). A distribution rule f satisfies contribution-
monotonicity if for every two profiles P and P ′ where P ′ can be obtained from P by
increasing the contribution of one agent (possibly from 0), f(P ′)(x) ≥ f(P )(x) for all
charities x ∈ A.

Theorem 5. EDR satisfies contribution-monotonicity.

Proof. Let P and P ′ be profiles as in Definition 6, so that C ′
i ≥ Ci for all i ∈ N .

Let δ and δ′ be the equilibrium distributions corresponding to profiles P and P ′,
respectively. Fix decompositions of δ and δ′ into individual distributions satisfying
Lemma 1.

Let A− , A=, and A+ be the sets of all charities x ∈ A with δ′(x) < δ(x), δ′(x) = δ(x),
and δ′(x) > δ(x), respectively. Assume for contradiction that A− is not empty. Thus,∑

i∈N δ′i(A
−) <

∑
i∈N δi(A

−), so there must be an agent i ∈ N with δ′i(A
−) < δi(A

−),
and a charity y ∈ A− with δ′i(y) < δi(y). But δ′i(A) = C ′

i ≥ Ci = δi(A), so δ′i(A
=∪A+) >

δi(A
=∪A+), so there must be a charity z ∈ A=∪A+ with δ′i(z) > δi(z) ≥ 0. By Lemma 1,

charities z and y are critical for i under δ′ and δ, respectively. This, in particular, implies
that vi,z > 0 and vi,y > 0. Therefore,

δ′(z)

vi,z
≤ δ′(y)

vi,y
<

δ(y)

vi,y
≤ δ(z)

vi,z
,

where the first and last inequalities follow from the definition of critical charities. This
implies δ′(z) < δ(z), a contradiction to z ∈ A= ∪A+.

Remark 2. Theorem 5 yields an alternative proof of the uniqueness of equilibrium
distributions, which does not rely on the equivalence with Nash welfare optimality. If
δ and δ′ are equilibrium distributions for the same profile, then both δ′(x) ≥ δ(x) and
δ(x) ≥ δ′(x) must hold for every charity x ∈ A, which implies δ′ = δ.
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6. Spending dynamics converging to equilibrium

Thus far, we have assumed the existence of a central authority that collects the preferences
of all agents and then either distributes the endowment among the charities or recommends
to each agent how to distribute her individual contribution. In this section, we show
that equilibrium distributions can also be attained in multi-round processes without a
central authority, simply by letting agents spend their contribution one after another in
a myopically optimal way. Agents need not reveal their preferences explicitly, but they
have to be able to observe the donations made in previous rounds.

To this end, we consider infinite processes in which agents repeatedly play best
responses against the strategies of the other agents in previous rounds. We first analyze a
redistribution dynamics where the endowment remains fixed and agents can redistribute
their contribution whenever it is their turn. It turns out that the distribution converges
to the equilibrium distribution under a very mild condition on the sequence of agents.
We then consider a continuous spending dynamics in which there is constant flow of
contributions from each agent (for example, when each donor i has set aside a monthly
budget Ci to spend on charitable activities). We focus on the case of round-robin
sequences and show that the relative overall distribution (or, equivalently, the average
distribution over all rounds) converges to the equilibrium distribution when agents can
only observe the distribution given by the last n− 1 rounds.10

These convergence results can be leveraged to make statements in more flexible settings
where the set of participating agents, as well as their preferences and contributions,
can change over time. The finite number of donations that have been made up to a
certain point will always be outweighed by the infinite number of donations that follow.
Hence, even with occasional changes to the profile, the relative overall distribution keeps
converging towards an equilibrium distribution of the current profile.

6.1. Redistribution dynamics

Let us first consider a dynamics in which the endowment remains fixed and agents
repeatedly redistribute their contributions after observing the current overall distribution.

Formally, denote by δ∗ the equilibrium distribution and by δt the distribution at round
t (along with its associated decomposition), e.g., δ0 equals the null vector as no agent
i ∈ N has yet distributed her contribution Ci. In each round t, allow one agent it to
(re-)distribute her entire contribution in such a way that her utility is maximized for the
new distribution δt+1, i.e.,

δbestit := arg max
δit∈∆(Cit )

uit

δit +
∑
j ̸=it

δtj

 ;

δt+1 := δbestit +
∑
j ̸=it

δtj .

10The formal statement is stronger as not only the relative overall distribution, but also the distribution
given by the last n rounds, converges to the equilibrium distribution.
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Lemma 8. For every round t and agent it, there is a unique best response δbestit
.

Proof. Since a best response corresponds to a solution of a maximization problem over
the closed and bounded set of possible distributions δit +

∑
j ̸=it

δtj with the continuous
objective function uit , existence is guaranteed.

To show uniqueness, observe that for the distribution in round t+1 (which for simplified
notation we denote by δ := δt+1), we have δit(Tδ,it) = Cit , that is, agent it distributes all
her contribution on her critical charities in δ. In any other response δ′it , agent it must
contribute less to at least one charity of Tδ,it . Therefore, her utility must be lower than
uit(δ), so δ′it cannot be a best response.

Before turning to the main result on the convergence of the dynamics, consider the
instance given in the introduction as an example. Suppose Donor 2 is the first in the
sequence. Her best response, given the initial distribution (0, 0, 0, 0), is to split her
donation of $100 between C and D, so the distribution becomes (0, 0, 50, 50). Next,
Donor 1 plays a best response, which splits the donation of $900 unequally, giving 316.6
to A, 316.6 to B and 266.6 to C. The distribution becomes (316.6, 316.6, 316.6, 50). Then,
Donor 2 plays a best response, which moves all her donation to D. The distribution
becomes (316.6, 316.6, 266.6, 100). Finally, Donor 1 plays a best response, which moves
16.6 from each of A and B to C. The distribution then becomes (300, 300, 300, 100), which
equals the equilibrium distribution. In this particular case, the equilibrium distribution
is attained after a finite number of rounds, but in general we can only prove convergence
at the limit.

Theorem 6. Given a profile P , let S = (i0, i1, i2, . . . ) be an infinite sequence of agents
updating their individual distributions via best responses such that there is a bound
K ∈ N on the maximal number of rounds an agent has to wait until she is allowed to
redistribute. Then, the redistribution dynamics converges to the equilibrium distribution,
i.e., limt→∞ δt = δ∗.

The proof will proceed in two steps: First, we will show that the amount an arbitrary
agent wants to redistribute converges to 0. Then, we will conclude that this can only be
the case if the dynamics converges to the equilibrium distribution. All proofs of auxiliary
lemmas are deferred to Appendix B.

For the first step, we define a real-valued function Φ on the set of strategy-vectors,
such that, whenever some agent deviates to a best response, Φ strictly increases.11

11The definition of Φ is inspired by the definition of ordinal potential functions, which were originally
introduced to prove the existence of pure strategy Nash equilibria in congestion games (Rosenthal,
1973; Monderer and Shapley, 1996) and have since then been widely used to prove convergence to
equilibrium (e.g., Milchtaich, 1996, 2000, 2004). However, an ordinal potential function increases
whenever a player plays a better response, whereas our Φ increases only when a player plays a best
response. In fact, the game we consider does not admit an ordinal potential function, as there can be
cycles of better responses.

Voorneveld (2000) defines a best-response potential function, which is maximized whenever a player
plays a best response; our Φ increases when a player plays a best response, but we do not know if it is
maximized.

Note that Nash welfare need not monotonically increase for best-response sequences.
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Φ(δ1, . . . , δn) :=
∑
i∈N

∑
x∈Ai

δi(x) log

(
vi,x
δ(x)

)
(8)

Note that Φ is well-defined, as δ(x) = 0 implies δi(x) = 0 for all i ∈ N , and x ∈ Ai

implies vi,x > 0.

Lemma 9. For any best-response sequence S, it holds that Φ(δt+1) > Φ(δt) for all t.

The potential Φ is bounded on ∆(CN ), since

Φ(δ1, . . . , δn) =
∑
i∈N

∑
x∈Ai

δi(x) log

(
vi,x
δ(x)

)
=
∑
i∈N

∑
x∈Ai

δi(x) log(vi,x)−
∑
x∈A

δ(x) log(δ(x))

≤
∑
i∈N

∑
x∈Ai

δi(x) log(vi,x) +
m

e
< ∞.

Therefore, the sequence (Φ(δt))t∈N has to converge to some limit. We denote this limit
by ϕ∗.

We will now show that the amount an arbitrary agent wants to redistribute converges
to 0. By assumption, there exists a round T ≤ K by which all agents have already
appeared at least once in S. It is sufficient to prove the theorem for the subsequence
starting at T . Therefore, from now on, we assume without loss of generality that at round
t = 0, all agents have already appeared at least once in S, and thus, have contributed
the entire amount Ci.

Denote the amount of shifted contributions in round t by ct:

ct :=
1

2
∥δt − δt+1∥1.

When moving from δt to δt+1 in round t, agent it redistributes ct from a set of
charities A−

it
to another set A+

it
with A+

it
∩ A−

it
= ∅. Since the agent is only allowed to

redistribute her individual distribution, ct ≤ δtit(A
−
it
). Furthermore, since she redistributes

according to her best response, she gives money only to charities that are critical to
her in the new distribution, so δt+1

it
(x) = 0 for all x ∈ A with δt+1(x)/vit,x > uit(δ

t+1)

and uit(δ
t+1) = δt+1(x+)/vit,x+ for every x+ ∈ A+

it
. An illustrative example is given in

Figure 1. In particular, δt+1(x−)/vit,x− ≥ uit(δ
t+1) = δt+1(x+)/vit,x+ for all x− ∈ A−

it

and x+ ∈ A+
it
.

Define di(δ) as the amount of contribution that would be shifted by an agent i if the
current distribution (along with its associated decomposition) were δ and it was her turn
to respond. Note that we define di(δ) for all agents, not only the one who actually plays
her best response; in particular, dit(δt) = ct for all t. Note also that δ is the equilibrium
distribution if and only if di(δ) = 0 for all i ∈ N .
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Figure 1: An instance with four charities (named w, x, y, z), δt = (3, 2, 6, 9), and an agent
it with δtit = (0, 2, 2, 2) and Leontief utilities with binary weights vit = (0, 1, 1, 1).
Then, δbestit

= (0, 5, 1, 0), δt+1 = (3, 5, 5, 7), ct = 3, A−
it
= {y, z}, A+

it
= {x}.

Lemma 10. For any sequence S, round t ≥ 0, and agent j ∈ N ,

dj(δ
t) ≤ dit(δ

t) + dj(δ
t+1).

Intuitively, the lemma can be seen as a “triangle inequality”: the left-hand side denotes
the direct distance from δt towards j’s optimal redistribution; the right-hand side denotes
the distance along an indirect path that first goes to δt+1 and then proceeds from there
towards j’s optimal redistribution.

For any agent j ∈ N and round t, we know that j will get the chance to redistribute her
contribution in at most K rounds by assumption. Denote this next round by t′ ≤ t+K.
So,

t′∑
ℓ=t

cℓ =

t′∑
ℓ=t

diℓ(δ
ℓ)

≥
t′∑
ℓ=t

(
dj(δ

ℓ)− dj(δ
ℓ+1)

)
(by Lemma 10)

= dj(δ
t)− dj(δ

t′+1)

= dj(δ
t) (as dj(δ

t′+1) = 0 after agent j’s best response).

Thus, we have an upper bound on the maximum amount any agent would like to shift at
any given round t.

Corollary 4. For all rounds t,
t+K∑
ℓ=t

cℓ ≥ max
i∈N

di(δ
t).

We combine this with Lemma 9 to show that the amount an agent wants to redistribute
converges to 0.

Lemma 11. For any sequence S and agent j ∈ N , limt→∞ dj(δ
t) = 0.

We can now complete the proof of Theorem 6.

Proof of Theorem 6. For any S, since (δt)t∈N is an infinite sequence in the closed set
of distributions in the (bounded) simplex ∆(CN ), the Bolzano-Weierstrass theorem
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states that it has a convergent subsequence (δtk)k∈N with limit δ ∈ ∆(CN ). Further-
more, by Lemma 11, limk→∞ di(δ

tk) = 0 for any convergent subsequence, implying
di(limt→∞ δtk) = 0 for every agent i ∈ N , and so limt→∞ δtk = δ∗ for every convergent
subsequence (δtk)k∈N. Thus, limt→∞ δt = δ∗.

Remark 3. For binary Leontief utilities, the potential simplifies to Φ(δ1, . . . , δn) =
−
∑

x∈A δ(x) log(δ(x)), i.e., lexicographic improvements of δ increase the potential. Con-
sequently, Φ̂(δ) :=

∑
|δ(x)− δ(y)|, where the sum is taken over all (unordered) pairs of

distinct charities x, y ∈ A, is an alternative potential. Moreover, Φ̂ has the advantage
that the potential increases linearly (not only quadratically) in the redistributed amounts.
It can then be shown that Theorem 6 holds for any sequence S in which each agent
appears infinitely often.

6.2. Round-robin spending dynamics

Let us now move on to a model in which there is constant flow of donations and each
agent repeatedly donates her contribution Ci when it is her turn. To this end, fix some
order of the agents (say, 1, 2, . . . , n) and denote by δti(x) the total amount of contributions
of agent i to charity x until round t. At each round t ≥ 0, agent it = 1 + (t mod n)
donates Cit in such a way that her utility is maximized with respect to the previous
donation of each other agent, i.e.,

δbestt := arg max
δit∈∆(Cit )

uit

(
δit +

∑
t−n<s<t

δbests

)
;

δt+1 := δt + δbestt ;

δt+1
it

:= δtit + δbestt ,

where the distribution of the contribution of agent it in round t is denoted by δbestt .12

Lemma 8 still applies: each agent’s best response is unique. To compare δt with the
equilibrium distribution δ∗ (where each agent only contributed once), we scale δti by the
number of donations of agent i until round t, which equals ⌊(t+ n− i)/n⌋.

To illustrate the process, consider the example from the introduction for the sequence
(2, 1, 2, 1, . . . ). First, Donor 2 splits her donation of $100 between C and D, resulting
in δ1 = (0, 0, 50, 50). Next, Donor 1 plays a best response, which splits the donation
of $900 unequally, giving 316.6 to A, 316.6 to B and 266.6 to C leading to δ2 =
(316.6, 316.6, 316.6, 50). Then, Donor 2 donates another $100 to D under her best response.
The overall distribution becomes δ3 = (316.6, 316.6, 316.6, 150). It is straightforward to
see that from now on, Donor 1 will always split her contribution equally on A, B, and
C whereas Donor 2 will only donate to D. Thus, limt→∞ 2δt1/t = (300, 300, 300, 0) and
limt→∞ 2δt2/t = (0, 0, 0, 100), showing convergence to the equilibrium distribution.

12We here assume that the “observation window” of each agent is given by the last n−1 rounds. Computer
simulations suggest that convergence also holds for larger observation windows.
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Theorem 7. Given a profile P , the continuous round-robin spending dynamics converges
to the equilibrium distribution, i.e.,

lim
t→∞

∑
i∈N

1

⌊(t+ n− i)/n⌋
δti = δ∗.

Proof. For every t, note that δbestt is the same distribution as the best response of agent
it under the redistribution dynamics of Section 6.1 with round-robin sequence S. Thus,
Theorem 6 implies that the sum of the last n individual distributions (one per agent)
converges to the equilibrium distribution, i.e., limt→∞

∑t
k=t−n+1 δ

best
k = δ∗. Consequently,

for t being a multiple of n, the sum

∑
i∈N

1

⌊(t+ n− i)/n⌋
δti =

∑
i∈N

n

t
δti =

n

t

t/n∑
ℓ=1

ℓn−1∑
k=(ℓ−1)n

δbestk

converges to δ∗ as t → ∞. As for arbitrarily large t not being a multiple of n,
donations from rounds ⌊n/t⌋, . . . , t − 1 do only have an arbitrarily small impact on∑

i∈N
1

⌊(t+n−i)/n⌋δ
t
i , convergence to δ∗ holds for the whole sequence.

Remark 4. In the spirit of Proposition 1, the convergence results for binary weights also
apply to Cobb-Douglas utility functions, as not only equilibrium distributions but also
best responses coincide.

7. Leontief utilities with binary weights

In this section, we consider the special case of binary Leontief weights, i.e., vi,x ∈ {0, 1}
for all agents i ∈ N and charities x ∈ A. Equivalently, each agent i has a non-empty set
of approved charities Ai ⊆ A and her utility from a distribution δ is

ui(δ) = min
x∈Ai

δ(x).

For each charity x ∈ A, we denote by Nx ⊆ N the set of agents who approve charity
x. For a subset of agents N ′ ⊆ N , we denote AN ′ :=

⋃
i∈N ′ Ai as the set of charities

approved by at least one member of N ′. Note that, for every charity x ∈ A and every
agent i ∈ Nx,

δ(x) ≥ ui(δ). (9)

Binary weights allow for further insights into the structure of the equilibrium distribution,
which in turn yield new interpretations and additional properties of EDR.

For linear utilities with binary weights, a distribution is in equilibrium if and only if
each agent contributes only to charities she approves. Brandl et al. (2021) refer to this
axiom as decomposability.
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Definition 7 (Decomposable distribution). Given a profile with binary weights (vi,x ∈
{0, 1}), a distribution δ is decomposable if it has a decomposition (δi)i∈N such that
δi(x) = 0 for every charity x ̸∈ Ai. Equivalently, it has a decomposition satisfying the
following, instead of (2):∑

x∈Ai

δi(x) = Ci for all i ∈ N. (10)

The equivalence of decomposable distributions and equilibrium distributions no longer
holds with Leontief utilities: there are decomposable distributions that are not in
equilibrium even when there is only one agent. Nevertheless, decomposability can be
used to establish two appealing alternative interpretations of EDR for binary weights.

7.1. Egalitarianism for charities

Motivated by Example 1, we aim at a rule which distributes money on the charities
as equally as possible while still respecting the preferences of the donors. One rule
that comes to mind selects a distribution that, among all decomposable distributions,
maximizes the smallest amount allocated to a charity. Subject to this, it maximizes the
second-smallest allocation to a charity, and so on. We define it formally using the leximin
relation.

Definition 8. Given two vectors x,y of the same size, we say that x is leximin-higher
than y (denoted x ≻lex y) if the smallest value in x is larger than the smallest value in
y; or the smallest values are equal, and the second-smallest value in x is larger than
the second-smallest value in y; and so on. x ⪰lex y means that either x ≻lex y or the
multiset of values in x is the same as that in y.

Definition 9. The charity egalitarian rule selects a distribution δ∗ that, among all
decomposable distributions, maximizes the distribution vector by the leximin order, that
is: δ∗ ⪰lex δ for every decomposable distribution δ.

The leximin order on the closed and convex set of decomposable distributions is
connected, every two vectors are comparable, and there exists a unique maximal element
(otherwise, any convex combination of two different maximal elements would be leximin-
higher than the maximal elements). Therefore, the charity egalitarian rule selects a
unique distribution and is well-defined. We prove below that the returned distribution
is the equilibrium distribution, resulting in an alternative characterization of EDR for
binary weights.

Theorem 8. With binary weights, the charity egalitarian rule and EDR are equivalent.

Proof. By uniqueness of the equilibrium distribution (Theorem 1), it is sufficient to
show that the charity egalitarian distribution is in equilibrium. Let δCHEG be the
decomposable charity egalitarian distribution, with decomposition δCHEG =

∑
i∈N δCHEG

i .
Suppose for contradiction that δCHEG is not in equilibrium. By Lemma 1, there is an
agent i ∈ N who contributes to a non-critical charity x ∈ Ai, that is, δCHEG

i (x) > 0
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and δCHEG(x) > ui(δ
CHEG). Let y ∈ Ai be a critical charity of agent i, that is,

δCHEG(y) = ui(δ
CHEG).

If agent i now moves 1/2(δCHEG(x)− δCHEG(y)) from x to y, the resulting distribution
is still decomposable, as both x and y are in Ai. It is leximin-higher than δCHEG ,
contradicting the leximin-maximality of δCHEG .

Remarkably, this new interpretation of EDR ignores the Leontief utilities of the agents
and does not directly take into account the different contributions. Instead, they enter
indirectly through the constraints induced by decomposability.

Theorem 8 implies that EDR can be computed by solving the following program, with
variables δx for all x ∈ A and δi,x for all i ∈ N, x ∈ A:

lexmaxmin{δx}x∈A subject to

δx =
∑
i∈N

δi,x for all x ∈ A∑
x∈Ai

δi,x = Ci for all i ∈ N

δi,x ≥ 0, δx ≥ 0 for all i ∈ N, x ∈ Ai

where “ lexmaxmin” refers to finding a solution vector that is maximal in the leximin
order subject to the constraints, and the second constraint represents decomposability.
It is well-known that such leximin optimization with k objectives and linear constraints
can be solved by a sequence of k linear programs (see, e.g., Ehrgott, 2005, Sect. 5.3).

Corollary 5. With binary weights, the equilibrium distribution can be computed by
solving at most m linear programs.

7.2. Egalitarianism for agents

While EDR is egalitarian from the point of view of the charities, one could also consider
a rule that is egalitarian from the point of view of the agents. The conditional egalitarian
rule aims to balance the agents’ utilities without disregarding their approvals. It selects
a decomposable distribution that, among all decomposable distributions, maximizes the
utility vector by the leximin order, that is: u(δCEG) ⪰lex u(δ) for every decomposable
distribution δ.

Theorem 9. With binary weights, the conditional egalitarian rule and EDR are equiva-
lent.

Proof. By uniqueness of the equilibrium distribution (Theorem 1), it is sufficient to
show that every conditional egalitarian distribution is in equilibrium. Let δCEG be a
conditional egalitarian distribution with decomposition δCEG =

∑
i∈N δCEG

i . Suppose
for contradiction that δCEG is not in equilibrium. Then, some agent i ∈ N contributes
to a non-critical charity x ∈ Ai, that is, δCEG

i (x) > 0 and δCEG(x) > ui(δ
CEG).

Let D := min
(
δCEG
i (x), δCEG(x) − ui(δ

CEG)
)
; our assumptions imply that D > 0.

Construct a new distribution δ′ from δCEG by changing only δCEG
i : remove D from
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charity x, and add D/|Ai| to every charity in Ai (including x). The utility of i increases
by D/|Ai|, since:

• δ′(x) = δCEG(x)−D +D/|Ai| ≥ ui(δ
CEG) +D/|Ai| by definition of D;

• δ′(y) = δCEG(y) + D/|Ai| ≥ ui(δ
CEG) + D/|Ai| for all y ∈ Ai \ x, by (9) with

equality for y ∈ TδCEG ,i.

• So ui(δ
′) = min(δ′(x),miny∈Ai\x δ

′(y)) = ui(δ
CEG) +D/|Ai| > ui(δ

CEG).

Moreover, if the utility of some agent j decreases—that is, uj(δ′) < uj(δ
CEG)—then this

must be because of the decrease in the distribution to x, so x must be a critical charity
for agent j in δ′, i.e., uj(δ′) = δ′(x) ≥ ui(δ

′) > ui(δ
CEG).

Thus, moving from δCEG to δ′, the number of agents with utility larger than ui(δ
CEG)

strictly increases, and the utility of each agent with utility at most ui(δCEG) in δCEG does
not decrease. Therefore, u(δ′) ≻lex u(δCEG). Since δ′ is decomposable, this contradicts
the optimality of δCEG .

Theorem 9 implies that the equilibrium distribution can be computed by solving the
following program, with variables ui for all i ∈ N and δi,x for all i ∈ N, x ∈ Ai.

lexmaxmin{ui}i∈N subject to
ui ≤ δi,x for all i ∈ N, x ∈ Ai∑
x∈Ai

δi,x = Ci for all i ∈ N

δi,x ≥ 0, ui ≥ 0 for all i ∈ N, x ∈ Ai

Using standard algorithms for lexicographic max-min optimization (see, e.g., Ehrgott,
2005, Sect. 5.3), this program can be solved using at most n linear programs.

Thus, we have three algorithms for computing the equilibrium distribution in the case
of binary weights: one requires at most m linear programs; one requires at most n linear
programs; and one requires a single convex (non-linear) program. It would be interesting
to investigate which of these algorithms is most efficient in practice.

Note that, for general Leontief utilities, equilibrium distributions do not necessarily
maximize the leximin vector of either the charities or the agents.

Example 3 (For general Leontief utilities, EDR, the conditional egalitarian rule, and
the charity egalitarian rule are different from one another). There are three charities x,
y, z, and two agents, both of whom contribute 30. The values of Agent 1 are (1, 2, 0)
and the values of Agent 2 are (0, 1, 1).

The charity egalitarian rule returns the leximin-maximal distribution for charities
(subject to decomposability), which is (20, 20, 20) with decomposition (20, 10, 0), (0, 10, 20).
It is not in equilibrium, since Agent 1 contributes to charity x, which is not critical.

The conditional egalitarian rule returns the leximin-maximal distribution for agents
(subject to decomposability), which is (15, 30, 15), with utility vector (15, 15) and de-
composition (15, 15, 0), (0, 15, 15). It is not in equilibrium, since Agent 2 contributes to
charity y, which is not critical.
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To compute the equilibrium distribution, we can guess that x, y are critical for Agent 1
and y, z are critical for Agent 2, and solve the system of four equations: δ(x) = u1;
δ(y) = 2u1 = u2; δ(z) = u2; δ(x) + δ(y) + δ(z) = 60. The solution is (12, 24, 24); Agent
1 contributes (12, 18, 0) and has utility 12, while Agent 2 contributes (0, 6, 24) and has
utility 24. One can verify that this distribution is indeed in equilibrium, so it is the
equilibrium distribution.

7.3. Welfare functions maximized by EDR

Based on the observation that EDR coincides with both the Nash product rule and the
conditional egalitarian rule for binary weights, a natural question to ask is which other
welfare notions are maximized by EDR subject to decomposability.

For this, we take a closer look at g-welfare (see Section 4.3 and Appendix A), but
this time subject to decomposability. Clearly, every g-welfare-maximizing distribution
is efficient. Below we prove that efficiency is retained even when maximizing among
decomposable distributions.

Lemma 12. Let g be any strictly increasing function, and let δ be a distribution that
maximizes the g-welfare among all decomposable distributions. Then δ is unique and
efficient.

Proof sketch. Suppose for contradiction that δ is not efficient. By Lemma 2, there is a
charity x ∈ supp(δ) which is not critical for any agent. Then, one agent who contributes
to x would be able to shift a small amount uniformly to the set of her critical charities such
that x is still not critical for any agent. The resulting distribution is still decomposable,
and Pareto dominates δ, contradicting the maximality of δ in g-welfare.

Uniqueness is proved similarly to Lemma 14, using the fact that the set of decompos-
able distributions is convex, i.e., mixing decomposable distributions results in another
decomposable distribution.

Note that uniqueness holds only within the set of decomposable distributions; there
might exist non-decomposable distributions with the same g-welfare, as shown in the
following example.

Example 4. Let g(x) = −x−1 (a strictly increasing function). Suppose there are two
agents with A1 = {a}, A2 = {b}, C1 = 2, C2 = 1. Then, the unique decomposable
distribution δ∗ = (2, 1) has the same g-welfare (−2/2−1/1 = −2) as the non-decomposable
distribution δ = (1.5, 1.5) (−2/1.5− 1/1.5 = −2).

The Nash product rule is often considered a compromise between maximizing utilitarian
welfare (

∑
i∈N Ci · ui) and egalitarian welfare (maximizing the utility of the agent with

smallest utility; notice that the conditional egalitarian rule is a refinement). This can
be seen when considering the family of g-welfare functions

∑
i∈N Ci · sgn(p) · up for

p ̸= 0 where the limit p → 0 corresponds to
∑

i∈N Ci · log(ui) and p → −∞ approaches
egalitarian welfare.
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The equivalence between conditional egalitarian welfare and Nash welfare extends to
a larger class of g-welfare functions. This is shown by the following theorem, proved in
Appendix C.1.

Theorem 10. Let g : R≥0 → R ∪ {−∞} be a function that satisfies the following
conditions:

1. g is strictly increasing on R≥0 and differentiable on R>0, and

2. xg′(x) is non-increasing on R>0.

Then, the equilibrium distribution maximizes g-welfare among all decomposable distribu-
tions.

Property (1) ensures that social welfare is indeed increasing when an individual’s
utility increases and small changes in individual utilities only cause small changes in the
total social welfare. Property (2) implies that increasing utilities are discounted “at least
logarithmically” when being translated to welfare.

In particular, Theorem 10 holds for all g-welfare functions
∑

i∈N Ci · sgn(p) · up with
p < 0. However, it ceases to hold when p > 0, as the following proposition (whose proof
is deferred to Appendix C.2) shows.

Proposition 3. For each p > 0, maximizing the g-welfare with respect to g(u) = up

subject to decomposability does not always return the equilibrium distribution.

Theorem 10 stresses the fact that EDR can be motivated not only from a game-theoretic
and axiomatic point of view, but also from a welfarist perspective.

8. Discussion

Under the assumption that donors’ preferences can be modeled using Leontief utility
functions, EDR turns out to be an exceptionally attractive rule for funding charitable
organizations. It satisfies efficiency, is group-strategyproof, can be computed via convex
programming or a pseudo-polynomial time algorithm, and returns the limit of natural
spending dynamics. Moreover, in the case of binary weights, EDR maximizes a wide
range of possible welfare functions and can be computed via linear programming. These
results stand in sharp contrast to the previously studied case of linear utilities, where a
far-reaching impossibility has shown the incompatibility of efficiency, strategyproofness,
and a very weak form of fairness (Brandl et al., 2021). The literature in this stream of
research has produced various rules such as the conditional utilitarian rule, the Nash
product rule, the random priority rule, or the sequential utilitarian rule which trade off
these properties against one another (Bogomolnaia et al., 2005; Duddy, 2015; Aziz et al.,
2020; Brandl et al., 2021, 2022).

An important question is to which extent our results carry over to other concave
utility functions, which offer a natural middle-ground between linear and Leontief utilities.
Proposition 1 and Remark 4 show that equilibrium existence and uniqueness as well as
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convergence of the best-response-based spending dynamics also hold for Cobb-Douglas
utilities. However, the equilibrium distribution may fail to be efficient (Remark 1) and
EDR is manipulable for Cobb-Douglas utilities (see Section 5.1).

Equilibrium distributions can be interpreted as market equilibria for a pure public good
market with unlimited supply. This perspective allows interesting comparisons to Fisher
markets, arguably the simplest markets for divisible private goods. Equilibria in Fisher
markets are connected to Nash welfare maximization under fairly general assumptions
about individual utilities, whereas this connection appears to be more volatile in our
public good markets. On the other hand, even for Leontief preferences, Fisher market
equilibria cannot be computed exactly, and the mechanism that returns the equilibrium
is manipulable.

Leontief preferences can be refined by breaking ties between distributions lexicograph-
ically, similar to leximin utilities. More precisely, rather than only caring about the
minimum of δ(x)/vi,x for x ∈ A, agents can rank all distributions according to the leximin
relation (Definition 8) among the vectors (δ(x)/vi,x)x∈A. Remarkably, all of our results
for general Leontief valuations carry over to these utility functions by adapting the proofs
accordingly. It should be noted, however, that lexicographic Leontief preferences are
discontinuous.
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APPENDIX

A. Welfare-maximizing distributions

Let g be a strictly increasing function. The g-welfare of a distribution δ is defined as the
following weighted sum:

g-welfare(δ) :=
∑
i∈N

Ci · g(ui(δ)).

Quantifying welfare enables us to compare and rank all possible utility vectors, which
by Lemma 3 induces a social welfare ordering over all distributions δ ∈ ∆(CN ) by
g-welfare(δ).

Inversely, every continuous social welfare ordering without any “welfare dependencies”
between the agents’ utilities can be represented by a g-welfare function; see Chapter 2 in
the book by Moulin (1988) for a detailed discussion. Additionally weighting agents by
their contributions, we arrive at the very expressive class of g-welfare functions.

A distribution is called g-welfare-maximizing if it maximizes the g-welfare, i.e., it
always chooses a maximal element of the corresponding social welfare ordering. Clearly,
every g-welfare-maximizing distribution is efficient. When g is concave (equivalently:
when the induced social welfare ordering satisfies the Pigou-Dalton principle), a g-welfare-
maximizing distribution can be found by solving a convex program where the variables
are (ui)i∈N and (δx)x∈A:

maximize
∑
i∈N

Ci · g(ui) subject to (11)∑
x∈A

δx ≤ CN

ui ≤ δx/vi,x for all i ∈ N, x ∈ Ai

ui ≥ 0 for all i ∈ N

δx ≥ 0 for all x ∈ A.

The following technical lemmas prove uniqueness of the welfare-maximizing distribution
when g is strictly concave (and strictly increasing).

Lemma 13. For every strictly concave, strictly increasing function g, every constant
t ∈ (0, 1), and every two distributions δ ̸= δ′,

g-welfare
(
tδ + (1− t)δ′

)
> min(g-welfare(δ′), g-welfare(δ)).

Proof. For every agent i ∈ N , by the concavity of the minimum operator,

ui
(
tδ + (1− t)δ′

)
≥ tui(δ) + (1− t)ui(δ).

Therefore,

g-welfare
(
tδ + (1− t)δ′

)
≥
∑
i∈N

Ci · g
(
t · ui(δ) + (1− t) · ui(δ′)

)
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> t
∑
i∈N

Ci · g(ui(δ)) + (1− t)
∑
i∈N

Ci · g(ui(δ′))

= t · g-welfare(δ) + (1− t) · g-welfare(δ′)
≥ min(g-welfare(δ′), g-welfare(δ))

where the first inequality follows from monotonicity and the second one from strict
concavity.

Lemma 14. For every strictly concave, strictly increasing function g, there is a unique
g-welfare-maximizing distribution.

Proof. Assume for contradiction that there exist two different g-welfare-maximizing
distributions δ and δ′. Since both distributions are efficient, by Lemma 3 they induce
two different utility vectors (ui(δ))i∈N and (ui(δ

′))i∈N . By Lemma 13, for any t ∈ (0, 1),

g-welfare
(
tδ + (1− t)δ′

)
> min(g-welfare(δ′), g-welfare(δ))
= g-welfare(δ′) = g-welfare(δ).

This contradicts the assumption that δ and δ′ are g-welfare-maximizing.

B. Proofs of auxiliary lemmas for Theorem 6 (dynamics)

Theorem 6. Given a profile P , let S = (i0, i1, i2, . . . ) be an infinite sequence of agents
updating their individual distributions via best responses such that there is a bound
K ∈ N on the maximal number of rounds an agent has to wait until she is allowed to
redistribute. Then, the redistribution dynamics converges to the equilibrium distribution,
i.e., limt→∞ δt = δ∗.

Recall our definition of a potential function (8):

Φ(δ1, . . . , δn) :=
∑
i∈N

∑
x∈Ai

δi(x) log

(
vi,x
δ(x)

)
.

Lemma 9. For any best-response sequence S, it holds that Φ(δt+1) > Φ(δt) for all t.

Proof. First, observe that an agent’s best response going from δt to δt+1 can be described
by the following continuous process: as long as the agent spends a positive amount on a
non-critical charity, transfer money from such a charity to all critical charities equally,
until either (i) at least one more charity becomes critical, or (ii) the agent no longer
spends a positive amount on a non-critical charity. This process can be interpreted as a
sequence of transfers, where each transfer of amount ε > 0 goes from a charity x with
higher weighted distribution to a charity y

(
δ(x)
vi,x

> δ(y)
vi,y

)
such that after the transfer, the

weighted distribution of the former charity remains at least as high as that of the latter:
δ(x)−ε
vi,x

≥ δ(y)+ε
vi,y

.
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For each t, since the difference between δt and δt+1 is caused by transfers, and
each amount ε transferred from one charity to another charity causes a change of ε
in distribution for both charities, it suffices to prove that each transfer increases the
potential, i.e., Φ(δε)−Φ(δ) > 0 for arbitrary δ ∈ ∆(CN ) and ε > 0 where δ and δε denote
the distributions before and after the transfer.

To see this, note that

Φ(δε)− Φ(δ) = (δi(x)− ε) log

(
vi,x

δ(x)− ε

)
+ (δi(y) + ε) log

(
vi,y

δ(y) + ε

)
+

∑
j∈N\i:δj(x)>0

δj(x) log

(
vj,x

δ(x)− ε

)
+

∑
j∈N\i:δj(y)>0

δj(y) log

(
vj,y

δ(y) + ε

)

− δi(x) log

(
vi,x
δ(x)

)
− δi(y) log

(
vi,y
δ(y)

)
−

∑
j∈N\i:δj(x)>0

δj(x) log

(
vj,x
δ(x)

)
−

∑
j∈N\i:δj(y)>0

δj(y) log

(
vj,y
δ(y)

)

=
∑

j∈N :δj(x)>0

δj(x) log

(
δ(x)

δ(x)− ε

)
+

∑
j∈N :δj(y)>0

δj(y) log

(
δ(y)

δ(y) + ε

)

+ ε

(
log

(
vi,y

δ(y) + ε

)
− log

(
vi,x

δ(x)− ε

))
= δ(x) log

(
δ(x)

δ(x)− ε

)
+ δ(y) log

(
δ(y)

δ(y) + ε

)
+ ε

(
log

(
vi,y

δ(y) + ε

)
− log

(
vi,x

δ(x)− ε

))
> 0

as the last term is nonnegative by δ(x)−ε
vi,x

≥ δ(y)+ε
vi,y

and the first two terms sum up to
something strictly positive which can be seen by using log(1 + x) > x

1+x for x > −1 and
x ̸= 0:

δ(x) log

(
δ(x)

δ(x)− ε

)
+ δ(y) log

(
δ(y)

δ(y) + ε

)
> δ(x) ·

ε
δ(x)−ε

1 + ε
δ(x)−ε

+ δ(y) ·
−ε

δ(x)+ε

1 + −ε
δ(x)+ε

= δ(x) · ε

δ(x)
+ δ(y) · −ε

δ(y)

= 0.

Lemma 10. For any sequence S, round t ≥ 0, and agent j ∈ N ,

dj(δ
t) ≤ dit(δ

t) + dj(δ
t+1).

Proof. If dj(δt) ≤ dit(δ
t), the statement holds trivially. Hence, assume that dj(δ

t) >
dit(δ

t). In particular, j ̸= it.
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Let δ̃t+1
j and δ̃t+1 be the (hypothetical) individual distribution of agent j and the

overall distribution had she been able to implement her best response at round t.
Denote the sets of charities that would be affected by agent j’s best response at δt by

A−
j := {x− ∈ Aj : δ̃

t+1
j (x−) < δtj(x

−)} and A+
j := {x+ ∈ Aj : δ̃

t+1
j (x+) > δtj(x

+)}. Then,

δ̃t+1(x−)

vj,x−
≥ δ̃t+1(x+)

vj,x+

for all x− ∈ A−
j and x+ ∈ A+

j ; and (12)

δ̃t+1
j (x) = 0 for all x ∈ A with uj(δ̃

t+1) <
δ̃t+1(x)

vj,x
(13)

hold by definition of best responses.
Now, a lower bound for dj(δ

t+1) is given by the amount shifted from charities in A−
j

under j’s best response in round t+ 1. Again, denote by δ̃t+2
j and δ̃t+2 agent j’s best

response in round t+ 1 and the corresponding overall distribution; note that both (12)
and (13) hold also with t+ 1 replaced by t+ 2.

Consider first the special case in which agent it did not change her contribution to
charities in A−

j ∪A+
j , that is, δt(x) = δt+1(x) for all x ∈ A−

j ∪A+
j . If dj(δt+1) < dj(δ

t),
then a smaller amount is transferred from charities in A−

j and to charities in A+
j in j’s best

response at δt+1 than in j’s best response at δt, so by (12), there exist charities x− ∈ A−
j

and x+ ∈ A+
j such that δ̃t+2(x−) > δ̃t+2(x+) ≥ vj,x+ · ui(δ̃t+2) and thus, δ̃t+2

j (x−) > 0.
This contradicts (13) with t+ 2 instead of t+ 1. Thus, dj(δt+1) ≥ dj(δ

t) and the claim
follows.

Consider now the general case, in which agent it may have changed her contribution
to some charities in A−

j ∪ A+
j . We claim that the total transfer of it and then j (i.e.,

dit(δ
t) + dj(δ

t+1)) cannot be less than the transfer if j were to act alone (i.e., dj(δt)).
The reason is similar to the previous paragraph: If this total transfer is less than dj(δ

t),
then there exist charities x− ∈ A−

j and x+ ∈ A+
j such that δ̃t+2(x−) > δ̃t+2(x+) ≥ vj,x+ ·

uj(δ̃
t+2) and δ̃t+2

j (x−) > 0, which is a contradiction. Hence, dit(δt) + dj(δ
t+1) ≥ dj(δ

t),
as desired.

Lemma 11. For any sequence S and agent j ∈ N , limt→∞ dj(δ
t) = 0.

Proof. We prove the equivalent statement: limt→∞maxi∈N di(δ
t) = 0. Assume for

contradiction that there exists γ > 0 such that for all T > 0 there exists T ′ ≥ T with
maxi∈N di(δ

T ′
) ≥ γ.

Recall that ϕ∗ is the limit of the increasing potential Φ(δt) as t → ∞. Choose some T

such that ϕ∗ − Φ(δT ) < γ2

4CNK2(m−1)2
and T ′ ≥ T with maxi∈N di(δ

T ′
) ≥ γ.

By Corollary 4,
∑T ′+K

ℓ=T ′ cℓ ≥ maxi∈N di(δ
T ′
) ≥ γ. Thus, there exists some t ∈ {T ′ +

1, . . . , T ′ + K} with ct ≥ γ/K. Consequently, in round t, agent it transfers at least
ε = γ/(K(m− 1)) from some charity x to some other charity y.

The upper bound on log(1+x) from Lemma 9 can be refined to log(1+x) > x
1+x+

x2

(2+x)2

for x > −1 and x ̸= 0, so we get
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Φ(δt+1)− Φ(δT
′
) ≥ Φ(δt+1)− Φ(δt)

> δt(x)

(
ε

δt(x)−ε

)2
(
2 + ε

δt(x)−ε

)2 + δt(y)

(
−ε

δt(y)+ε

)2
(
2 + −ε

δt(y)+ε

)2
= δt(x)

ε2

(2δt(x)− ε)2
+ δt(y)

ε2

(2δt(y) + ε)2

> δt(x)
ε2

(2δt(x)− ε)2

>
ε2

4δt(x)
>

ε2

4CN
> ϕ∗ − Φ(δT )

> ϕ∗ − Φ(δT
′
)

This implies Φ(δt+1) > ϕ∗. But this is impossible, since Φ(δt) is increasing with t and
converges to ϕ∗.

Thus, limt→∞ di(δ
t) = 0 for every agent i.

C. Proofs omitted from Section 7

C.1. Proof of Theorem 10

Theorem 10. Let g : R≥0 → R ∪ {−∞} be a function that satisfies the following
conditions:

1. g is strictly increasing on R≥0 and differentiable on R>0, and

2. xg′(x) is non-increasing on R>0.

Then, the equilibrium distribution maximizes g-welfare among all decomposable distribu-
tions.

The proof requires some additional definitions and lemmas and proceeds as follows.
First, we show that it is sufficient to prove the statement for reduced profiles (Definition 12
and Lemma 17), which are profiles in which each agent approves only charities that
receive the same amount in the equilibrium distribution. Then we prove that, in any
reduced profile, the equilibrium distribution δ∗ maximizes g-welfare, not only in the set of
decomposable distributions, but even in a larger set of weakly decomposable distributions
(Definition 11). To do this, we prove that, for any weakly-decomposable distribution
δ ̸= δ∗, there exists a modification δ′, which is weakly-decomposable but has a higher
g-welfare than δ.

Recall that [z] := {1, 2, . . . , z} for each positive integer z.
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Definition 10. Given any distribution δ, define P(δ) as a partition of the charities into
subsets allocated the same amount. That is, P(δ) := (X1, . . . , Xp) for some integer p ≥ 1,
where ∪p

k=1Xk = A, and for each k ∈ [p], all charities in Xk receive the same amount,
δ(x) = wk for all x ∈ Xk, and the amounts are ordered such that 0 ≤ w1 < · · · < wk.

Note that w1 = 0 if and only if there exist charities that receive no funding.

Lemma 15. Let δ∗ be the equilibrium distribution, and (X∗
1 , . . . , X

∗
p ) = P(δ∗) be its

charity partition. For each k ≥ 1, let N∗
k be the set of agents who approve one or more

charities of X∗
k , but do not approve any charity of ∪ℓ<kX

∗
ℓ . Then in equilibrium, the

agents of N∗
k contribute only to charities of X∗

k , that is:

δ∗(X∗
k) = CN∗

k
, and

w∗
k = CN∗

k
/|X∗

k | = δ∗(X∗
k)/|X∗

k |.

Proof. The utility of all agents in N∗
k is w∗

k, so the set of their critical charities is contained
in X∗

k . In equilibrium they contribute only to charities in X∗
k by Lemma 1.

All charities in X∗
k receive the same amount, so this amount must be CN∗

k
/|X∗

k |.

Note that, if there are charities not approved by any agent (or approved only by agents
who contribute 0), then all these charities will be in X∗

1 , and we will have w∗
1 = CN∗

1
= 0.

Definition 11. A distribution δ is called weakly decomposable if it has a decomposition in
which each agent i only contributes to charities x with δ∗(x) ≥ ui(δ

∗), where δ∗ denotes
the equilibrium distribution.

With binary weights, x ∈ Ai implies δ∗(x) ≥ ui(δ
∗), so every decomposable distribution

is weakly decomposable. Therefore, it is sufficient to prove that δ∗ maximizes g-welfare
among all weakly decomposable distributions.

The set of weakly decomposable distributions is again convex and can be characterized
as follows.

Lemma 16. A distribution δ is weakly decomposable if and only if, for every ℓ ∈ [p],

δ
(
∪p
k=ℓX

∗
k

)
≥ δ∗

(
∪p
k=ℓX

∗
k

)
. (14)

Proof. A distribution δ is weakly decomposable if and only if there exists a decomposition
of δ where for every ℓ ∈ [p], agents of N∗

ℓ only contribute to charities of ∪p
k=ℓX

∗
k . This

holds if and only if δ
(
∪p
k=ℓX

∗
k

)
≥
∑p

k=ℓCN∗
ℓ

for every ℓ ∈ [p]. By Lemma 15, this is
equivalent to the condition δ

(
∪p
k=ℓX

∗
k

)
≥ δ∗

(
∪p
k=ℓX

∗
k

)
for every ℓ ∈ [p].

To simplify the proof of Theorem 10, we introduce the following class of profiles.

Definition 12. A profile is called reduced if, in its equilibrium distribution δ∗, for every
agent i, there exists a k ∈ [p] such that Ai ⊆ X∗

k , that is, all charities approved by an
agent belong to the same class in the partition induced by δ∗.
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Note that, in a reduced profile, all charities approved by agent i receive in equilibrium
the same amount ui(δ

∗), and therefore are all critical for i, that is, Tδ∗,i = Ai for all
i ∈ N .

Lemma 17. If Theorem 10 is true for reduced profiles, then it is true for all profiles.

Proof. Let P be any profile, and δ∗ its equilibrium distribution. Let P ′ be its reduced
profile where, compared to P , every agent i has removed her approval from every charity
x with δ∗(x) > ui(δ

∗). Then, δ∗ is the equilibrium distribution for P ′, too (by the
same decomposition). By assumption, Theorem 10 is true for P ′, so δ∗ maximizes
g-welfare among all distributions that are weakly decomposable with respect to P ′. Since
the equilibrium distribution is the same in P and P ′, the set of weakly decomposable
distributions is the same too.

The profile P differs from P ′ by having additional approvals, which could only decrease
the maximal possible g-welfare. But δ∗ yields the same welfare in P and P ′. Therefore,
δ∗ necessarily maximizes g-welfare among all distributions that are weakly decomposable
with respect to P , too.

Proof of Theorem 10. Based on Lemma 17, we assume without loss of generality that
we are given a reduced profile. Let X∗

1 , . . . , X
∗
p , and N∗

1 , . . . , N
∗
p be the partitioning of

charities and agents induced by the equilibrium distribution δ∗, and w∗
1 < · · · < w∗

p the
corresponding allocations. By Lemma 15, each charity in X∗

k receives w∗
k = δ∗(X∗

k)/|X∗
k |,

and every agent i ∈ N∗
k has utility w∗

k. Since the profile is reduced, Tδ∗,i = Ai ⊆ X∗
k for

all i ∈ N∗
k .

Let δ be any weakly decomposable distribution different than δ∗. We prove that δ
does not maximize g-welfare among weakly decomposable distributions by showing a
modification δ′ of δ, which is weakly decomposable but has a higher g-welfare than δ.

Since δ ̸= δ∗ and both distributions sum up to CN , there must be charities x−, x+ ∈ A
with δ(x−) < δ∗(x−) and δ(x+) > δ∗(x+), respectively. Consequently, one of the following
two cases has to apply:

• If δ(X∗
k) = δ∗(X∗

k) for all k ∈ [p], let X∗
r = X∗

s (r = s) be a class that contains a
charity x− with δ(x−) < δ∗(x−).

• Otherwise, let r be the largest index in [p] for which δ(X∗
r ) ̸= δ∗(X∗

r ). Weak
decomposability of δ and Lemma 16 imply that δ(X∗

r ) > δ∗(X∗
r ). As δ(X∗

k) = δ∗(X∗
k)

for all k > r, there must be an s ≤ r such that there exists a charity x− in X∗
s with

δ(x−) < δ∗(x−); choose s ≤ r to be the largest index with this property.

In both cases, we define X− ⊆ X∗
s as the set of all charities x in X∗

s with δ(x) < δ∗(x),
and X+ ⊆ X∗

r as the set of all charities x in X∗
r with δ(x) > δ∗(x); both sets must be

non-empty by construction. The case r > s is depicted in Figure 2.
Starting from δ, transfer a sufficiently small amount ε uniformly from X+ to X−;

call the resulting distribution δ′. We choose ε small enough such that it does not
change the order relations between charities inside and outside X+ and X−, that is,
for all x− ∈ X− and x+ ∈ X+: δ′(x+) > δ′(x) for all x ∈ A with δ(x+) > δ(x),
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δ∗

δ

X∗
1 X∗

s X∗
r X∗

p

X−

x−max

X+

x+min

Figure 2: Charity sets in the proof of Theorem 10, for the case r > s. The horizontal
position of a charity denotes its allocation in δ∗; the vertical position denotes
its allocation in δ.

and analogously, δ′(x−) < δ′(x) for all x ∈ A with δ(x−) < δ(x). In particular, since
δ(x+) > δ∗(x+) ≥ δ∗(x−) > δ(x−), we have δ′(x+) > δ′(x−).

We claim that δ′ is weakly decomposable. By Lemma 16, it suffices to show that
(14) holds for δ′, that is, δ′

(
∪p
k=ℓX

∗
k

)
≥ δ∗

(
∪p
k=ℓX

∗
k

)
for every ℓ ∈ [p]. Note that

δ′
(
∪p
k=ℓX

∗
k

)
= δ

(
∪p
k=ℓX

∗
k

)
for all ℓ ≤ s and all ℓ ≥ r + 1, so for these indices, (14) for

δ′ follows from the weak-decomposability of δ. It therefore remains to prove (14) for
ℓ ∈ {s+ 1, . . . , r}. This set is non-empty only when s < r, which is possible only in the
second case above.

Our choices of r and s ensure that δ
(
∪p
k=rX

∗
k

)
> δ∗

(
∪p
k=rX

∗
k

)
and δ (∪s

k=1X
∗
k) <

δ∗ (∪s
k=1X

∗
k). For ε sufficiently small, the same inequalities hold between δ′ and δ∗.

Moreover, for s < ℓ ≤ r,

δ′
(
∪p
k=ℓX

∗
k

)
= δ′

(
∪p
k=rX

∗
k

)
+ δ′

(
∪r−1
k=ℓX

∗
k

)
> δ∗

(
∪p
k=rX

∗
k

)
+ δ

(
∪r−1
k=ℓX

∗
k

)
≥ δ∗

(
∪p
k=ℓX

∗
k

)
where the first inequality holds because δ′

(
∪p
k=rX

∗
k

)
> δ∗

(
∪p
k=rX

∗
k

)
and δ′(X∗

k) = δ(X∗
k)

for all k ̸∈ {r, s}, and the second inequality holds because, for each k ∈ {s+1, . . . , r− 1},
all charities x in X∗

k satisfy δ(x) ≥ δ∗(x) by definition of s. Therefore, by Lemma 16, δ′

is still weakly decomposable.
We now analyze the effect of this redistribution on the agents’ utilities. For that,

we prove an auxiliary claim on critical charities of agents under δ. Define x+min ∈
argminx+∈X+ δ(x+) as a charity from X+ with minimal allocation in δ and x−max ∈
argmaxx−∈X− δ(x−) as a charity from X− with maximal contribution in δ.
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Claim. For every agent i ∈ N , either Tδ,i ∩ X− = ∅ or Tδ,i ⊆ X−. Similarly, either
Tδ,i ∩X+ = ∅ or Tδ,i ⊆ X+.

Proof of claim. We prove the claim for X−; the proof for X+ is analogous. By definition
of critical charities, Tδ,i ⊆ Ai. Since the profile is reduced, Ai is contained in a single
partition class. If this partition class is not the one that contains X−, namely X∗

s , then
Tδ,i ∩X− = ∅. Otherwise, Tδ,i ⊆ X∗

s . Now, if ui(δ) > δ(x−max), then δ(x) > δ(x−max) for
every x ∈ Tδ,i, so Tδ,i ∩X− = ∅; and if ui(δ) ≤ δ(x−max), then δ(x) ≤ δ(x−max) for every
x ∈ Tδ,i, so Tδ,i ⊆ X−.

Back to proof of theorem. Denote by “losers” the agents who lose utility from the
redistribution. The claim implies that all the losers have Tδ,i ⊆ X+; each of them loses
ε/|X+|. Moreover, all losers have Ai ⊆ X+: this is because Ai ⊆ X∗

r (since the profile
is reduced), and δ(xA) ≥ δ(xT ) ≥ δ(x+min) for all xA ∈ Ai and xT ∈ Tδ,i. Therefore, in
equilibrium, all losers give all their contributions to charities in X+. This implies that
the contributions of all losers sum up to at most δ∗(X+) = w∗

r · |X+|. Then, for every
loser i,

g (ui(δ))− g
(
ui(δ

′)
)
≤ g

(
δ(x+min)

)
− g

(
δ(x+min)−

ε

|X+|

)
(15)

by concavity of g (which follows from the assumption that xg′(x) is non-increasing).
Denote by “gainers” the agents who gain utility from the redistribution. The claim

implies that every agent with Tδ,i ∩ X− ̸= ∅ is a gainer; each of them gains ε/|X−|.
Moreover, every agent with Ai ∩X− ̸= ∅ is a gainer: this is because Ai ∩X− ̸= ∅ implies
δ(xA) ≤ δ(x−max) for at least one charity xA ∈ Ai, and δ(xT ) ≤ δ(xA) for all charities
xT ∈ Tδ,i. Therefore, in equilibrium, every agent who contributes a positive amount to at
least one charity in X− must be a gainer. So the contributions of all gainers must sum
up to at least δ∗(X−) = w∗

s · |X−|. Then, for every gainer i,

g
(
ui(δ

′)
)
− g (ui(δ)) ≥ g

(
δ(x−max) +

ε

|X−|

)
− g

(
δ(x−max)

)
(16)

by concavity of g.
Therefore, by (15) and (16), the increase in g-welfare from δ to δ′ is at least

w∗
s · |X−| ·

[
g

(
δ(x−max) +

ε

|X−|

)
− g

(
δ(x−max)

)]
(17)

−w∗
r · |X+| ·

[
g
(
δ(x+min)

)
− g

(
δ(x+min)−

ε

|X+|

)]
.

Since g is strictly concave,

g

(
δ(x−max) +

ε

|X−|

)
− g(δ(x−max)) >

ε

|X−|
· g′
(
δ(x−max) +

ε

|X−|

)
;

46



Draft – September 30, 2024

g(δ(x+min))− g

(
δ(x+min)−

ε

|X+|

)
<

ε

|X+|
· g′
(
δ(x+min)−

ε

|X+|

)
.

Plugging this into (17), we get that the increase in g-welfare is larger than

w∗
s · |X−| · ε

|X−|
· g′
(
δ(x−max) +

ε

|X−|

)
− w∗

r · |X+| · ε

|X+|
· g′
(
δ(x+min)−

ε

|X+|

)
.

By our choice of ε, we have w∗
r = δ∗(x+min) < δ(x+min), so w∗

r < δ(x+min) − ε/|X+| for
sufficiently small ε. Similarly, w∗

s = δ∗(x−max) > δ(x−max) + ε/|X−| for sufficiently small ε.
Therefore, the increase in g-welfare is larger than

ε ·
(
δ(x−max) +

ε

|X−|

)
· g′
(
δ(x−max) +

ε

|X−|

)
−ε ·

(
δ(x+min)−

ε

|X+|

)
· g′
(
δ(x+min)−

ε

|X+|

)
.

(18)

By our choice of ε, δ(x−max)+ε/|X−| < δ(x+min)−ε/|X+|. By the assumption on g, xg′(x)
is non-increasing in x. Therefore, the expression in (18) is at least 0, so the increase in
g-welfare from δ to δ′ is larger than 0. This means that δ does not maximize g-welfare.

Since δ was any weakly decomposable distribution different than δ∗, we conclude that
δ∗ maximizes g-welfare subject to weak decomposability in any reduced profile. By
Lemma 17, the same is true in any profile.

C.2. Proof of Proposition 3

Proposition 3. For each p > 0, maximizing the g-welfare with respect to g(u) = up

subject to decomposability does not always return the equilibrium distribution.

Proof. For a fixed p > 0, consider a profile consisting of two agents with binary weights and
approval sets {a} and {a, b}, and respective contributions C1 = max

(
(2p−1 · p)−1/p

, 2
)

and C2 = 1. Since C1 ≥ 2, the equilibrium distribution is (C1, 1). We claim that the
decomposable distribution (C1 + 1, 0) yields a higher g-welfare, that is,

C1 · g(C1 + 1) + 1 · g(0) > C1 · g(C1) + 1 · g(1)
⇐⇒ C1 · (g(C1 + 1)− g(C1)) > 1.

For every p ≥ 1, g is convex, so

g(C1 + 1)− g(C1) ≥ g′(C1) · 1 = p · Cp−1
1

=⇒ C1 · (g(C1 + 1)− g(C1)) ≥ p · Cp
1 ≥ p · 2p ≥ 2 > 1.

For every 0 < p < 1, g is strictly concave, so

g(C1 + 1)− g(C1) > g′(C1 + 1) · 1 = p · (C1 + 1)p−1

> p · (2C1)
p−1 (since p− 1 < 0 and C1 > 1)
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and so

C1 · (g(C1 + 1)− g(C1)) > 2p−1 · p · Cp
1

≥ 2p−1 · p ·

((
1

2p−1p

) 1
p

)p

= 1.

In both cases, the equilibrium distribution does not maximize g-welfare.

D. Efficient computability of equilibrium distributions

The equilibrium distribution can be computed by solving a convex program. In this
section, we prove that, in fact, it can be computed exactly in pseudo-polynomial time.

Note that the equilibrium distribution does not change when individual valuations
are rescaled. Similarly, rescaling contributions preserves the share each charity receives.
Thus, for the sake of simplicity, we assume throughout this section that all valuations
and contributions are natural numbers. We prove that the equilibrium distribution
can be computed in time poly(n,m, log2(vmax), CN ) where vmax := maxi∈N,x∈A vi,x. In
particular, if all contributions are equal, i.e., Ci = 1 for all i ∈ N , then the run-time is
polynomial in the binary encoding length of the input.

As a first step, we prove that the equilibrium distribution δ∗ and its utility profile
(which we denote by u∗) are rational with a bounded binary encoding length.

Lemma 18. If the agents’ valuations vi,x and contributions Ci are natural numbers, then
the equilibrium distribution δ∗ and its utility profile u∗ are rational-valued.

Moreover, the binary encoding length of (δ∗, u∗) is bounded by a polynomial function
of the binary encoding length of vi,x and Ci.

Proof. For each i ∈ N , let Ti be a non-empty set of charities. Consider the following
linear program (LP), with variables ui (for i ∈ N), dx (for x ∈ A), and di,x (for i ∈ N
and x ∈ A):

dx = ui · vi,x for all i ∈ N, x ∈ Ti;

dx ≥ ui · vi,x for all i ∈ N, x ∈ A \ Ti;∑
x∈Ti

di,x = Ci for all i ∈ N ;

∑
i∈N

di,x = dx for all x ∈ A;

di,x ≥ 0 for all i ∈ N, x ∈ A.

Every solution of this LP (if any) represents a distribution δ(x) = δx for all x, with a
decomposition δi(x) = δi,x for all i, x, such that each agent i contributes only to charities
in Ti, and all the charities in Ti are critical for i. By Lemma 1, such a distribution has
to coincide with the equilibrium distribution.
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The equilibrium distribution δ∗ is a solution to the above LP whenever Ti = Tδ∗,i for
all i ∈ N . By assumption, the coefficients of this LP are all rational. Therefore, by
well-known properties of linear programming, the LP has a rational solution, with binary
encoding length bounded by a polynomial function of the representation length of its
coefficients.

We can even give an explicit bound on the representation length of δ∗.
Given the equilibrium distribution δ∗, we construct an undirected graph where vertices

correspond to charities, and there is an edge between x, y ∈ A if and only if there exists
an agent i ∈ N with x, y ∈ Tδ∗,i. Each component of that graph can be considered
separately, as the sum of contributions to that component equals the sum of contributions
of agents for whom parts of the component are critical charities.

Thus, let A′ ⊆ A be a subset of m′ charities forming a component and N ′ ⊆ N the
subset of agents contributing to charities in A′. Given some x1 ∈ A′, there needs to be
at least one other charity x2 that can be reached in one step, i.e., there exists an agent
i1 ∈ N ′ such that δ∗(x1)/vi1,x1 = δ∗(x2)/vi1,x2 . Hence, δ∗(x2) = (vi1,x2/vi1,x1) · δ∗(x1).
Next, there exists another charity x3 ∈ A′ that can be reached in one step from either x1
or x2. In general, given k < m′ connected charities from A′, there needs to be another
one that can be reached in one step from one of the k charities.

This gives a system of linear equations where each δ∗(xj) can be written in terms
of δ∗(x1): δ∗(x2) only requires the two valuations vi1,x1 and vi1,x2 , δ∗(x3) requires at
most four valuations and so on. Considering this “worst case” in terms of representation
length together with

∑
x∈A δ∗(x) =

∑
i∈N ′ Ci, δ∗(x1) can be written as the fraction of∑

i∈N ′ Ci and 1 + vi1,x2/vi1,x1 + (vi1,x2/vi1,x1) · (vi2,x3/vi2,x2) + . . . resulting in a binary
encoding length of log2(CN · vmax

m−1) for the nominator and log2(m · vmax
m−1)) for the

denominator where we upper-bounded m′ by m,
∑

i∈N ′ Ci by CN , and vi,x by vmax.
As x1 was chosen arbitrarily and Leontief utilities coincide with distributions to certain

charities, (δ∗, u∗) can be represented by n+m times the derived length for δ∗(x1).

Lemma 18 cannot be used directly for computing the equilibrium distribution in
polynomial time, since the proof requires us to know Tδ∗,i. We cannot iterate over all
possible Tδ∗,i as this would require exponential time.

To prove polynomial-time computability, we leverage Theorem 13 by Jain (2007):

Lemma 19 (Jain, 2007). Let S be a convex set given by a strong separation oracle, and
ϕ > 0 an integer.

There is an oracle-polynomial time and ϕ-linear time algorithm which does one of the
following:

1. Concludes that there is no point in S with binary encoding length at most ϕ, or —

2. Produces a point in S with binary encoding length at most P (n) · ϕ, where P (n) is
a polynomial.

We apply Lemma 19 as follows. For every positive rational number z0, we define a
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convex set S(z0) ⊆ Rn+m, where the variables are ui for i ∈ N and dx for x ∈ A:

n∏
i=1

ui
Ci ≥ z0;

dx ≥ ui · vi,x for all i ∈ N, x ∈ A;∑
x∈A

dx = CN ;

ui ≥ 0 for all i ∈ N ;

dx ≥ 0 for all x ∈ A;

The set S(z0) represents all pairs (δ, u) such that δ is a feasible distribution, u is its
utility profile, and the Nash product is at least z0. A strong separation oracle for S(z0)
is a function that accepts as input a rational vector y′ = (u′1, . . . , u

′
n, d

′
1, . . . , d

′
m). It

should return one of two outcomes: either an assertion that y′ ∈ S(z0), or a hyperplane
that separates y′ from S(z0) (that is, a rational vector c such that c · y′ < c · y for all
y ∈ S(z0)).

Lemma 20. For every rational z0 > 0, there is a polynomial-time strong separation
oracle for the convex set S(z0).

Proof. Given a rational vector y′ = (u′1, . . . , u
′
n, d

′
1, . . . , d

′
m), we first check whether the

point satisfies the linear constraints d′x ≥ u′i · vi,x,
∑

x∈A d′x = CN , u′i ≥ 0 and d′x ≥ 0. If
one of these constraints is violated, the constraint itself yields a separating hyperplane.
As the number of these constraints is polynomial in n,m, all of them can be checked in
polynomial time.

It remains to handle the case that all linear constraints are satisfied, whereas the
nonlinear constraint is violated. That is, we have

n∏
i=1

(u′i)
Ci < z0. (19)

Recall that we assume that all Ci are natural numbers; therefore the above condition
can be checked exactly using arithmetic operations on rational numbers. The binary
encoding length of the product is polynomial in the binary encoding length of u′i, and in
Ci; due to the latter fact, it is in fact pseudo-polynomial in the input size. However, if
all contributions are equal, they can be ignored and the representation stays polynomial
in the input size.

To construct a separating hyperplane for this case, we use an idea similar to the one in
Jain (2007). We define the vector c to have the coefficient 1

CN
· Ci
u′
i

for each variable ui, and
the coefficient 0 for each variable dx. Note that the encoding length of c is polynomial in
the input size. For every vector y = (u1, . . . , un, d1, . . . , dm),

c · y =
1

CN
·

n∑
i=1

Ci
ui
u′i
.
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Substituting y := y′ gives c · y′ = 1. We now prove that c · y > 1 for every y ∈ S(z0).
Indeed, c · y is a weighted arithmetic mean of the n positive numbers ui

u′
i
, with weights

Ci. By the weighted AM-GM inequality, this sum is at least as large as their weighted
geometric mean, that is

1

CN
·

n∑
i=1

Ci
ui
u′i

≥

(
n∏

i=1

(
ui
u′i

)Ci
)1/CN

=
(
∏n

i=1(ui)
Ci)1/CN

(
∏n

i=1(u
′
i)
Ci)1/CN

Since y = (u1, . . . , un, d1, . . . , dm) is in S(z0), it satisfies the inequality (
∏n

i=1(ui)
Ci) ≥ z0.

Substituting in the right-hand side above gives:

1

CN
·

n∑
i=1

Ci
ui
u′i

≥ z0
1/CN

(
∏n

i=1(u
′
i)
Ci)1/CN

=

(
z0∏n

i=1(u
′
i)
Ci

)1/CN

,

which is larger than 1 by (19). Hence, c · y > 1, so c indeed defines a separating
hyperplane.

Lemma 20 allows us to apply Lemma 19 to S(z0). We can now compute the equilibrium
distribution by applying binary search to z0, in the following way.

1. Initialize L := the Nash product of some arbitrary distribution (e.g., the uniform
distribution).

2. Initialize H := some upper bound on the optimal Nash product, e.g. the Nash
product resulting from the (unrealistic) distribution in which each agent i divides
CN optimally (in proportion to vi).

3. Let ϕ := an upper bound on the binary encoding length of (δ∗, u∗), derived in
Lemma 18.

4. Let z0 := (L+H)/2. Note that both L and H can be encoded in length polynomial
in the input size, so the same applies to z0.

5. Apply Lemma 19 to S(z0), using Lemma 20 for the strong separation oracle.

• If Lemma 19 yields outcome 1 (“no point in S(z0) with binary encoding
length at most ϕ”), then we know that S(z0) does not contain an equilibrium
distribution. This means that the Nash product of the equilibrium distribution
is lower than z0. We set H := z0 and return to step 4.

• If Lemma 19 yields outcome 2 (“a point in S(z0) with binary encoding length
at most P (n) · ϕ”), then in particular we have a distribution δ with Nash
product at least z0.

We check whether δ is an equilibrium distribution (this can be done in poly-
nomial time). If it is, we return δ and finish. Otherwise, we set L := z0 and
return to step 4.
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As the binary encoding length of (δ∗, u∗) is at most ϕ, the binary encoding length of
the maximum Nash product is at most

∑
iCi log2(u

∗
i ) ≤ CN · ϕ. Therefore, after at

most CN · ϕ steps, the binary search is guaranteed to terminate with an equilibrium
distribution.

52


	Introduction
	Related work
	The model
	Equilibrium distributions
	Critical charities
	Efficiency
	Existence, uniqueness, and computation
	Cobb-Douglas utilities
	Public good markets

	The equilibrium distribution rule
	Strategyproofness
	Preference-monotonicity
	Contribution-monotonicity

	Spending dynamics converging to equilibrium
	Redistribution dynamics
	Round-robin spending dynamics

	Leontief utilities with binary weights
	Egalitarianism for charities
	Egalitarianism for agents
	Welfare functions maximized by 

	Discussion
	Welfare-maximizing distributions
	Proofs of auxiliary lemmas for thm:leon-dynamics (dynamics)
	Proofs omitted from Section 7
	Proof of thm: cd-is-fmaximal
	Proof of prop: p>0

	Efficient computability of equilibrium distributions

